931 resultados para internal stresses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen metabolism was examined in the intertidal seaweeds Fucus vesiculosus, Fucus serratus, Fucus spiralis and Laminaria digitata in a temperate Irish sea lough. Internal NO3- storage, total N content and nitrate reductase activity (NRA) were most affected by ambient NO3-, with highest values in winter, when ambient NO3- was maximum, and declined with NO3- during summer. In all species, NRA was six times higher in winter than in summer, and was markedly higher in Fucus species (e.g. 256 ± 33 nmol NO3- min1 g1 in F. vesiculosus versus 55 ± 17 nmol NO3- min1 g1 in L. digitata). Temperature and light were less important factors for N metabolism, but influenced in situ photosynthesis and respiration rates. NO3- assimilating capacity (calculated from NRA) exceeded N demand (calculated from net photosynthesis rates and C : N ratios) by a factor of 0.7–50.0, yet seaweeds stored significant NO3- (up to 40–86 µmol g1). C : N ratio also increased with height in the intertidal zone (lowest in L. digitata and highest in F. spiralis), indicating that tidal emersion also significantly constrained N metabolism. These results suggest that, in contrast to the tight relationship between N and C metabolism in many microalgae, N and C metabolism could be uncoupled in marine macroalgae, which might be an important adaptation to the intertidal environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.