948 resultados para interactive highway safety design
Resumo:
Highway agencies spend millions of dollars to ensure safe and efficient winter travel. However, the effectiveness of winter weather maintenance practices on safety and mobility are somewhat difficult to quantify. Phase I of this project investigated opportunities for improving traffic safety on state-maintained roads in Iowa during winter weather conditions. The primary objective was to develop several preliminary means for the Iowa Department of Transportation (DOT) to identify locations of possible interest systematically with respect to winter weather-related safety performance based on crash history. Specifically, metrics were developed to assist in identifying possible habitual, winter weather-related crash sites on state-maintained rural highways in Iowa. In addition, the current state of practice, for both domestic and international highway agency practices, regarding integration of traffic safety- and mobility-related data in winter maintenance activities and performance measures were investigated. This investigation also included previous research efforts. Finally, a preliminary work plan, focusing on systematic use of safety-related data in support of winter maintenance activities and site evaluation, was prepared.
Roadway Lighting and Safety: Phase II – Monitoring Quality, Durability and Efficiency, November 2011
Resumo:
This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.
Resumo:
The State of Iowa [STATE] and the Iowa Department of Transportation [IDOT] hereby is claim any warranty of any kind, express or implied, in reference to the information contained herein. The STATE and the IDOT neither assume nor authorize any person to assume for the STATE or the IDOT any liability in connection with the information contained herein, and there are no oral agreements or warranties regarding the information contained herein. Each and every person is hereby notified that the vertical clearances specified herein are subject to change due to resurfacing, surface buckling, weather conditions, or any other event. It is the responsibility of each and every vehicle operator to ascertain whether sufficient ACTUAL vertical clearance exists to move his vehicle or motor vehicle between the roadway and the underpasses and bridges listed herein. The May 15 date on this map reflects the end of the update schedule for the previous calendar year. Any vertical clearance restrictions which could or may change AFTER this date will not be reflected on this map. For the latest information on vertical clearance restrictions call the Office of Motor Carrier Services in Ankeny, (515) 237-3264 or visit http://www.iowadot.gov/mvd/omcs.
Resumo:
The film depicts period traffic congestion, sharp and winding sections of road, steep hills making trucks slow to a crawl, and dangerous vehicle and pedestrian crossings, all important reasons why highway design and safety improvements, and highway relocation were needed. In fact, when the film was produced, U.S. 30 or the Lincoln Highway was the busiest primary road in Iowa; and the section between State Center and Boone was deemed “critical,” meaning it was considered dangerous by the ISHC’s Efficiency Standards.
Roadway Lighting and Safety: Phase II – Monitoring Quality, Durability and Efficiency, November 2011
Resumo:
This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.
Resumo:
The creation of three-dimensional (3D) drawings for proposed designs for construction, re-construction and rehabilitation activities are becoming increasingly common for highway designers, whether by department of transportation (DOT) employees or consulting engineers. However, technical challenges exist that prevent the use of these 3D drawings/models from being used as the basis of interactive simulation. Use of driving simulation to service the needs of the transportation industry in the US lags behind Europe due to several factors, including lack of technical infrastructure at DOTs, cost of maintaining and supporting simulation infrastructure—traditionally done by simulation domain experts—and cost and effort to translate DOT domain data into the simulation domain.
Resumo:
The creation of three-dimensional (3D) drawings for proposed designs for construction, re-construction and rehabilitation activities are becoming increasingly common for highway designers, whether by department of transportation (DOT) employees or consulting engineers. However, technical challenges exist that prevent the use of these 3D drawings/models from being used as the basis of interactive simulation. Use of driving simulation to service the needs of the transportation industry in the US lags behind Europe due to several factors, including lack of technical infrastructure at DOTs, cost of maintaining and supporting simulation infrastructure—traditionally done by simulation domain experts—and cost and effort to translate DOT domain data into the simulation domain.
Resumo:
In response to local concerns, the Iowa Department of Transportation (DOT) requested a road safety audit (RSA) for the IA Highway 28 corridor through the City of Norwalk in Warren County, Iowa, from the south corporate limits of Norwalk through the IA 5 interchange in Polk County, Iowa. The audit included meeting with City staff to discuss concerns, review crash history and operational issues, observe the route under daylight and nighttime conditions, and analyze available data. This report outlines the findings and recommendations of the audit team for addressing the safety concerns and operational matters along this corridor.
Resumo:
This guide specification and commentary for concrete pavements presents current state-of-the art thinking with respect to materials and mixture selection, proportioning, and acceptance. This document takes into account the different environments, practices, and materials in use across the United States and allows optional inputs for local application. The following concrete pavement types are considered: jointed plain concrete pavement, the most commonly used pavement type and may be doweled or non-doweled at transverse joints; and continuously reinforced concrete pavement, typically constructed without any transverse joints, typically used for locations with high truck traffic loads and/or poor support conditions.
Resumo:
A guide specification and commentary have been prepared that lay out current state-of-the art thinking with respect to materials and mixture selection, proportioning, and acceptance. These documents take into account the different environments, practices, and materials in use across the US and allow optional inputs for local application.
Resumo:
Currently, many drivers experience some difficulty in viewing the road ahead of them during times of reduced visibility, such as rain, snow, fog, or the darkness of night- Recent studies done by the National Safety Council provide a detailed contrast between fatal accidents occurring during the day and night. Revealed was that the motor vehicle night death rate (4.41 deaths per 100 million miles driven) was sharply higher than the corresponding death rate during daylight hours (1.21). By providing a delineating system powered by the natural resource of solar power, a constant source of visibility may be maintained throughout the evening. Along with providing enough light to trace the outline of the road, other major goals defined in producing this delineator system are as follows: 1. A strong and durable design that would protect the internal components and survive extreme weather conditions. 2. A low maintenance system where components need few repairs or replacements. 3. A design which makes all components accessible in the event that maintenance is needed, but also prevents vandalism. 4. A design that provides greater visibility to drivers and will not harm a vehicle or its passengers in the event of a collision. This solar powered highway delineator consists of an adjustable solar array, a light fixture, and a standard delineator pole. The solar array houses and protects the solar panels, and can be easily adjusted to obtain a maximum amount of sunlight. The light fixture primarily houses the battery, the circuit and the light assembly. Both components allow for easy accessibility and reduce vandalism using internal connections for bolts and wires. The delineator mounting pole is designed to extensively deform in the event of a collision, therefore reducing any harm caused to the vehicle and/or the passengers. The cost of a single prototype to be produced is approximately $70.00 excluding labor costs. However, these material and labor costs will be greatly reduced if a large number of delineators are produced. It is recommended that the Iowa Department of Transportation take full advantage of the research and development put into this delineator design. The principles used in creating this delineator can be used to provide an outline for drivers to follow, or on a larger scale, provide actual roadway lighting in areas where it was never before possible or economically feasible. In either event, the number of fatal accidents will be decreased due to the improved driver visibility in the evening.
Resumo:
Culverts are common means to convey flow through the roadway system for small streams. In general, larger flows and road embankment heights entail the use of multibarrel culverts (a.k.a. multi-box) culverts. Box culverts are generally designed to handle events with a 50-year return period, and therefore convey considerably lower flows much of the time. While there are no issues with conveying high flows, many multi-box culverts in Iowa pose a significant problem related to sedimentation. The highly erosive Iowa soils can easily lead to the situation that some of the barrels can silt-in early after their construction, becoming partially filled with sediment in few years. Silting can reduce considerably the capacity of the culvert to handle larger flow events. Phase I of this Iowa Highway Research Board project (TR-545) led to an innovative solution for preventing sedimentation. The solution was comprehensively investigated through laboratory experiments and numerical modeling aimed at screening design alternatives and testing their hydraulic and sediment conveyance performance. Following this study phase, the Technical Advisory Committee suggested to implement the recommended sediment mitigation design to a field site. The site selected for implementation was a 3-box culvert crossing Willow Creek on IA Hwy 1W in Iowa City. The culvert was constructed in 1981 and the first cleanup was needed in 2000. Phase II of the TR 545 entailed the monitoring of the site with and without the selfcleaning sedimentation structure in place (similarly with the study conducted in laboratory). The first monitoring stage (Sept 2010 to December 2012) was aimed at providing a baseline for the operation of the as-designed culvert. In order to support Phase II research, a cleanup of the IA Hwy 1W culvert was conducted in September 2011. Subsequently, a monitoring program was initiated to document the sedimentation produced by individual and multiple storms propagating through the culvert. The first two years of monitoring showed inception of the sedimentation in the first spring following the cleanup. Sedimentation continued to increase throughout the monitoring program following the depositional patterns observed in the laboratory tests and those documented in the pre-cleaning surveys. The second part of Phase II of the study was aimed at monitoring the constructed self-cleaning structure. Since its construction in December 2012, the culvert site was continuously monitored through systematic observations. The evidence garnered in this phase of the study demonstrates the good performance of the self-cleaning structure in mitigating the sediment deposition at culverts. Besides their beneficial role in sediment mitigation, the designed self-cleaning structures maintain a clean and clear area upstream the culvert, keep a healthy flow through the central barrel offering hydraulic and aquatic habitat similar with that in the undisturbed stream reaches upstream and downstream the culvert. It can be concluded that the proposed self-cleaning structural solution “streamlines” the area upstream the culvert in a way that secures the safety of the culvert structure at high flows while producing much less disturbance in the stream behavior compared with the current constructive approaches.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.
Wind Tunnel Analysis of the Effects of Planting at Highway Grade Separation Structures, HR-202, 1979
Resumo:
Blowing and drifting snow has been a problem for the highway maintenance engineer virtually since the inception of the automobile. In the early days, highway engineers were limited in their capability to design and construct drift free roadway cross sections, and the driving public tolerated the delays associated with snow storms. Modern technology, however, has long since provided the design expertise, financial resources, and construction capability for creating relatively snowdrift free highways, and the driver today has come to expect a highway facility that is free of snowdrifts, and if drifts develop they expect highway maintenance crews to open the highway within a short time. Highway administrators have responded to this charge for better control of snowdrifting. Modern highway designs in general provide an aerodynamic cross section that inhibits the deposition of snow on the roadway insofar as it is economically feasible to do so.
Resumo:
In June 2001, the Iowa Department of Transportation announced the imminent closure and disposal of selected highway maintenance facilities as part of cost-cutting measures mandated by the Iowa legislature, an action that was to be completed by July 31, 2001. The DOT recognized that some of these facilities might be "historical sites," which in the Iowa Code are defined as any district, site, building or structure listed on the National Register of Historic Places or identified as eligible for listing in the National Register by the State Historic Preservation Office. Section 303 of the Code requires state agencies to "enter into an agreement with the Department of Cultural Affairs [in which the SHPO is located] to ensure the proper management, maintenance and development of historical sites." The DOT saw this disposal action as an opportunity to compile information about its highway maintenance facilities that could be employed in development of a management program for historic highway maintenance facilities in the future. Subsequently, the DOT authorized a similar study of highway weigh stations.