956 resultados para impedance spectra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report integral cross sections for elastic electron scattering by the lignin subunits phenol, guaiacol, and p-coumaryl alcohol. Our calculations employed the Schwinger multichannel method with pseudopotentials and indicate three to four pi* shape resonances for each of these systems, suggesting that low-energy electrons could efficiently transfer energy into the lignin matrix. We also discuss dissociation mechanisms based on the calculated cross sections, available experimental data, virtual orbital analysis, and the knowledge on electron interactions with biomolecules. Our results point out a physical-chemical basis for electron-driven biomass delignification. The latter would be an essential step for efficient biofuel production from lignocellulosic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The admittance spectra and current-voltage (I-V) characteristics are reported of metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) capacitors employing cross-linked poly(amide-imide) (c-PAI) as the insulator and poly(3-hexylthiophene) (P3HT) as the active semiconductor. The capacitance of the MIM devices are constant in the frequency range from 10 Hz to 100 kHz, with tan delta values as low as 7 x 10(-3) over most of the range. Except at the lowest voltages, the I-V characteristics are well-described by the Schottky equation for thermal emission of electrons from the electrodes into the insulator. The admittance spectra of the MIS devices displayed a classic Maxwell-Wagner frequency response from which the transverse bulk hole mobility was estimated to be similar to 2 x 10(-5) cm(2) V(-1)s(-1) or similar to 5 x 10(-8) cm(2) V(-1)s(-1) depending on whether or not the surface of the insulator had been treated with hexamethyldisilazane (HMDS) prior to deposition of the P3HT. From the maximum loss observed in admittance-voltage plots, the interface trap density was estimated to be similar to 5 x 10(10) cm(-2) eV(-1) or similar to 9 x 10(10) cm(-2) eV(-1) again depending whether or not the insulator was treated with HMDS. We conclude, therefore, that HMDS plays a useful role in promoting order in the P3HT film as well as reducing the density of interface trap states. Although interposing the P3HT layer between the insulator and the gold electrode degrades the insulating properties of the c-PAI, nevertheless, they remain sufficiently good for use in organic electronic devices. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is no consensus regarding the accuracy of bioimpedance for the determination of body composition in older persons. This study aimed to compare the assessment of lean body mass of healthy older volunteers obtained by the deuterium dilution method (reference) with those obtained by two frequently used bioelectrical impedance formulas and one formula specifically developed for a Latin-American population. A cross-sectional study. Twenty one volunteers were studied, 12 women, with mean age 72 +/- 6.7 years. Urban community, Ribeiro Preto, Brazil. Fat free mass was determined, simultaneously, by the deuterium dilution method and bioelectrical impedance; results were compared. In bioelectrical impedance, body composition was calculated by the formulas of Deuremberg, Lukaski and Bolonchuck and Valencia et al. Lean body mass of the studied volunteers, as determined by bioelectrical impedance was 37.8 +/- 9.2 kg by the application of the Lukaski e Bolonchuk formula, 37.4 +/- 9.3 kg (Deuremberg) and 43.2 +/- 8.9 kg (Valencia et. al.). The results were significantly correlated to those obtained by the deuterium dilution method (41.6 +/- 9.3 Kg), with r=0.963, 0.932 and 0.971, respectively. Lean body mass obtained by the Valencia formula was the most accurate. In this study, lean body mass of older persons obtained by the bioelectrical impedance method showed good correlation with the values obtained by the deuterium dilution method. The formula of Valencia et al., developed for a Latin-American population, showed the best accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton nuclear magnetic resonance (H-1 NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T-2 filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T-2 filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T-2 or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of the utility harmonic impedance based on measurements is a significant task for utility power-quality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic conducting membranes of gelatin plasticized with glycerol and containing LiI/I-2 have been obtained and characterized by X-ray diffraction measurements, UV-Vis-NIR spectroscopy, thermal analysis and impedance spectroscopy. The transparent (80-90% in the visible range) membranes showed ionic conductivity value of 5 x 10(-5) S/cm at room temperature, which increased to 3 x 10(-3) S/cm at 80 degrees C. All the ionic conductivity measurements as a function of temperature showed VTF dependence and activation energy of 8 kJ/mol. These samples also showed low glass transition temperature of -76 degrees C. Moreover the samples were predominantly amorphous. The membranes applied to small electrochromic devices showed 20% of color change from colored to bleached states during more than 70 cronoamperometric cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study is to evaluate the differences on FTIR spectra of the normal lung cell (noncancerous mice lung epithelial cell line e10) due to different fixation protocols for histological processing. The results shown that formalin and methacarn (normally used in fixation) did cause many changes on the FTIR spectra of mice lung cells e10, mainly in the organic compounds (800-1800 cm(-1)) in lipids, DNA, and proteins, and the alcohol 70% fixation protocol caused almost no changes on the FTIR spectra compared to unfixed cells spectra (in PBS). It can be concluded that histological processing with alcohol 70% fixation protocol can be used in the FTIR study of mice lung cell line e10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of polymer-based photovoltaic devices brings the promise of low-cost and lightweight solar energy conversion systems. This technology requires new materials and device architectures with enhanced efficiency and lifetime, which depends on the understanding of charge-transport mechanisms. Organic films combined with electronegative nanoparticles may form systems with efficient dissociation of the photogenerated excitons, thus increasing the number of carriers to be collected by the electrodes. In this paper we investigate the steady-state photoconductive action spectra of devices formed by a bilayer of regio-regular poly(3-hexylthiophene) (RRP3HT) and TiO2 sandwiched between ITO and aluminum electrodes (ITO/TiO2:RRP3HT/Al). Photocurrents were measured for distinct bias voltages with illumination from either side of the device. Heterojunction structures were prepared by spin coating a RRP3HT film on an already deposited TiO2 layer on ITO. Symbatic and antibatic curves were obtained and a model for photocurrent action spectra was able to fit the symbatic responses. The quantum yield increased with the electric field, indicating that exciton dissociation is a field-assisted process as in an Onsager mechanism. Furthermore, the quantum yield was significantly higher when illumination was carried out through the ITO electrode onto which the TiO2 layer was deposited, as the highly electronegative TiO2 nanoparticles were efficient in exciton dissociation.