972 resultados para household investment decisions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally accepted that financial markets are efficient in the long run a lthough there may be some deviations in the short run. It is also accepted that a good portfolio manager is the one who beats the market persistently along time, this type of manager could not exist if markets were perfectly efficient According to this in a pure efficient market we should find that managers know that they can not beat the market so they would undertake only pure passive management strategies. Assuming a certain degree of inefficiency in the short run, a market may show some managers who tr y to beat the market by undertaking active strategies. From Fama’s efficient markets theory we can state that these active managers may beat the market occasionally although they will not be able to enhance significantly their performance in the long run. On the other hand, in an inefficient market it would be expected to find a higher level of activity related with the higher probability of beating the market. In this paper we follow two objectives: first, we set a basis to analyse the level of efficiency in an asset invest- ment funds market by measuring performance, strategies activity and it’s persistence for a certain group of funds during the period of study. Second, we analyse individual performance persistence in order to determine the existence of skilled managers. The CAPM model is taken as theoretical background and the use of the Sharpe’s ratio as a suitable performance measure in a limited information environment leads to a group performance measurement proposal. The empiri- cal study takes quarterly data from 1999-2007 period, for the whole population of the Spanish asset investment funds market, provided by the CNMV (Comisión Nacional del Mercado de Valores). This period of study has been chosen to ensure a wide enough range of efficient market observation so it would allow us to set a proper basis to compare with the following period. As a result we develop a model that allows us to measure efficiency in a given asset mutual funds market, based on the level of strategy’s activity undertaken by managers. We also observe persistence in individual performance for a certain group of funds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Household hazardous materials annual report for the Iowa Department of Natural Resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging studies analyzing neurophysiological signals are typically based on comparing averages of peri-stimulus epochs across experimental conditions. This approach can however be problematic in the case of high-level cognitive tasks, where response variability across trials is expected to be high and in cases where subjects cannot be considered part of a group. The main goal of this thesis has been to address this issue by developing a novel approach for analyzing electroencephalography (EEG) responses at the single-trial level. This approach takes advantage of the spatial distribution of the electric field on the scalp (topography) and exploits repetitions across trials for quantifying the degree of discrimination between experimental conditions through a classification scheme. In the first part of this thesis, I developed and validated this new method (Tzovara et al., 2012a,b). Its general applicability was demonstrated with three separate datasets, two in the visual modality and one in the auditory. This development allowed then to target two new lines of research, one in basic and one in clinical neuroscience, which represent the second and third part of this thesis respectively. For the second part of this thesis (Tzovara et al., 2012c), I employed the developed method for assessing the timing of exploratory decision-making. Using single-trial topographic EEG activity during presentation of a choice's payoff, I could predict the subjects' subsequent decisions. This prediction was due to a topographic difference which appeared on average at ~516ms after the presentation of payoff and was subject-specific. These results exploit for the first time the temporal correlates of individual subjects' decisions and additionally show that the underlying neural generators start differentiating their responses already ~880ms before the button press. Finally, in the third part of this project, I focused on a clinical study with the goal of assessing the degree of intact neural functions in comatose patients. Auditory EEG responses were assessed through a classical mismatch negativity paradigm, during the very early phase of coma, which is currently under-investigated. By taking advantage of the decoding method developed in the first part of the thesis, I could quantify the degree of auditory discrimination at the single patient level (Tzovara et al., in press). Our results showed for the first time that even patients who do not survive the coma can discriminate sounds at the neural level, during the first hours after coma onset. Importantly, an improvement in auditory discrimination during the first 48hours of coma was predictive of awakening and survival, with 100% positive predictive value. - L'analyse des signaux électrophysiologiques en neuroimagerie se base typiquement sur la comparaison des réponses neurophysiologiques à différentes conditions expérimentales qui sont moyennées après plusieurs répétitions d'une tâche. Pourtant, cette approche peut être problématique dans le cas des fonctions cognitives de haut niveau, où la variabilité des réponses entre les essais peut être très élevéeou dans le cas où des sujets individuels ne peuvent pas être considérés comme partie d'un groupe. Le but principal de cette thèse est d'investiguer cette problématique en développant une nouvelle approche pour l'analyse des réponses d'électroencephalographie (EEG) au niveau de chaque essai. Cette approche se base sur la modélisation de la distribution du champ électrique sur le crâne (topographie) et profite des répétitions parmi les essais afin de quantifier, à l'aide d'un schéma de classification, le degré de discrimination entre des conditions expérimentales. Dans la première partie de cette thèse, j'ai développé et validé cette nouvelle méthode (Tzovara et al., 2012a,b). Son applicabilité générale a été démontrée avec trois ensembles de données, deux dans le domaine visuel et un dans l'auditif. Ce développement a permis de cibler deux nouvelles lignes de recherche, la première dans le domaine des neurosciences cognitives et l'autre dans le domaine des neurosciences cliniques, représentant respectivement la deuxième et troisième partie de ce projet. En particulier, pour la partie cognitive, j'ai appliqué cette méthode pour évaluer l'information temporelle de la prise des décisions (Tzovara et al., 2012c). En se basant sur l'activité topographique de l'EEG au niveau de chaque essai pendant la présentation de la récompense liée à un choix, on a pu prédire les décisions suivantes des sujets (en termes d'exploration/exploitation). Cette prédiction s'appuie sur une différence topographique qui apparaît en moyenne ~516ms après la présentation de la récompense. Ces résultats exploitent pour la première fois, les corrélés temporels des décisions au niveau de chaque sujet séparément et montrent que les générateurs neuronaux de ces décisions commencent à différentier leurs réponses déjà depuis ~880ms avant que les sujets appuient sur le bouton. Finalement, pour la dernière partie de ce projet, je me suis focalisée sur une étude Clinique afin d'évaluer le degré des fonctions neuronales intactes chez les patients comateux. Des réponses EEG auditives ont été examinées avec un paradigme classique de mismatch negativity, pendant la phase précoce du coma qui est actuellement sous-investiguée. En utilisant la méthode de décodage développée dans la première partie de la thèse, j'ai pu quantifier le degré de discrimination auditive au niveau de chaque patient (Tzovara et al., in press). Nos résultats montrent pour la première fois que même des patients comateux qui ne vont pas survivre peuvent discriminer des sons au niveau neuronal, lors de la phase aigue du coma. De plus, une amélioration dans la discrimination auditive pendant les premières 48heures du coma a été observée seulement chez des patients qui se sont réveillés par la suite (100% de valeur prédictive pour un réveil).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly Public Assistance Statistical Report Family Investment Program