892 resultados para hierarchical entropy
Resumo:
Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.
Resumo:
A flexible and multipurpose bio-inspired hierarchical model for analyzing musical timbre is presented in this paper. Inspired by findings in the fields of neuroscience, computational neuroscience, and psychoacoustics, not only does the model extract spectral and temporal characteristics of a signal, but it also analyzes amplitude modulations on different timescales. It uses a cochlear filter bank to resolve the spectral components of a sound, lateral inhibition to enhance spectral resolution, and a modulation filter bank to extract the global temporal envelope and roughness of the sound from amplitude modulations. The model was evaluated in three applications. First, it was used to simulate subjective data from two roughness experiments. Second, it was used for musical instrument classification using the k-NN algorithm and a Bayesian network. Third, it was applied to find the features that characterize sounds whose timbres were labeled in an audiovisual experiment. The successful application of the proposed model in these diverse tasks revealed its potential in capturing timbral information.
Resumo:
The main purpose of this study is to present an alternative benchmarking approach that can be used by national regulators of utilities. It is widely known that the lack of sizeable data sets limits the choice of the benchmarking method and the specification of the model to set price controls within incentive-based regulation. Ill-posed frontier models are the problem that some national regulators have been facing. Maximum entropy estimators are useful in the estimation of such ill-posed models, in particular in models exhibiting small sample sizes, collinearity and non-normal errors, as well as in models where the number of parameters to be estimated exceeds the number of observations available. The empirical study involves a sample data used by the Portuguese regulator of the electricity sector to set the parameters for the electricity distribution companies in the regulatory period of 2012-2014. DEA and maximum entropy methods are applied and the efficiency results are compared.
Resumo:
Unmanned aerial vehicles (UAVs) frequently operate in partially or entirely unknown environments. As the vehicle traverses the environment and detects new obstacles, rapid path replanning is essential to avoid collisions. This thesis presents a new algorithm called Hierarchical D* Lite (HD*), which combines the incremental algorithm D* Lite with a novel hierarchical path planning approach to replan paths sufficiently fast for real-time operation. Unlike current hierarchical planning algorithms, HD* does not require map corrections before planning a new path. Directional cost scale factors, path smoothing, and Catmull-Rom splines are used to ensure the resulting paths are feasible. HD* sacrifices optimality for real-time performance. Its computation time and path quality are dependent on the map size, obstacle density, sensor range, and any restrictions on planning time. For the most complex scenarios tested, HD* found paths within 10% of optimal in under 35 milliseconds.
Resumo:
En este trabajo se propone un nuevo sistema híbrido para el análisis de sentimientos en clase múltiple basado en el uso del diccionario General Inquirer (GI) y un enfoque jerárquico del clasificador Logistic Model Tree (LMT). Este nuevo sistema se compone de tres capas, la capa bipolar (BL) que consta de un LMT (LMT-1) para la clasificación de la polaridad de sentimientos, mientras que la segunda capa es la capa de la Intensidad (IL) y comprende dos LMTs (LMT-2 y LMT3) para detectar por separado tres intensidades de sentimientos positivos y tres intensidades de sentimientos negativos. Sólo en la fase de construcción, la capa de Agrupación (GL) se utiliza para agrupar las instancias positivas y negativas mediante el empleo de 2 k-means, respectivamente. En la fase de Pre-procesamiento, los textos son segmentados por palabras que son etiquetadas, reducidas a sus raíces y sometidas finalmente al diccionario GI con el objetivo de contar y etiquetar sólo los verbos, los sustantivos, los adjetivos y los adverbios con 24 marcadores que se utilizan luego para calcular los vectores de características. En la fase de Clasificación de Sentimientos, los vectores de características se introducen primero al LMT-1, a continuación, se agrupan en GL según la etiqueta de clase, después se etiquetan estos grupos de forma manual, y finalmente las instancias positivas son introducidas a LMT-2 y las instancias negativas a LMT-3. Los tres árboles están entrenados y evaluados usando las bases de datos Movie Review y SenTube con validación cruzada estratificada de 10-pliegues. LMT-1 produce un árbol de 48 hojas y 95 de tamaño, con 90,88% de exactitud, mientras que tanto LMT-2 y LMT-3 proporcionan dos árboles de una hoja y uno de tamaño, con 99,28% y 99,37% de exactitud,respectivamente. Los experimentos muestran que la metodología de clasificación jerárquica propuesta da un mejor rendimiento en comparación con otros enfoques prevalecientes.
Resumo:
International audience
Resumo:
This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.
Resumo:
Information entropy measured from acoustic emission (AE) waveforms is shown to be an indicator of fatigue damage in a high-strength aluminum alloy. Several tension-tension fatigue experiments were performed with dogbone samples of aluminum alloy, Al7075-T6, a commonly used material in aerospace structures. Unlike previous studies in which fatigue damage is simply measured based on visible crack growth, this work investigated fatigue damage prior to crack initiation through the use of instantaneous elastic modulus degradation. Three methods of measuring the AE information entropy, regarded as a direct measure of microstructural disorder, are proposed and compared with traditional damage-related AE features. Results show that one of the three entropy measurement methods appears to better assess damage than the traditional AE features, while the other two entropies have unique trends that can differentiate between small and large cracks.
Resumo:
We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.
Resumo:
Meso-/microporous zeolites combine the charactersitics of well-defined micropores of zeolite with efficient mass transfer consequences of mesopores to increase the efficiency of the catalysts in reactions involving bulky molecules. Different methods such as demetallation and templating have been explored for the synthesis of meso-/microporous zeolites. However, they all have limitations in production of meso-/microporous zeolites with tunable textural and catalytic properties using few synthesis steps. To address this challenge, a simple one-step dual template synthesis approach has been developed in this work to engineer lamellar meso-/microporous zeolites structures with tunable textural and catalytic properties. First, one-step dual template synthesis of meso-/microporous mordenite framework inverted (MFI) zeolite structures was investigated. Tetrapropyl ammonium hydroxide (TPAOH) and diquaternary ammonium surfactant ([C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13]Br2, C22-6-6) were used as templates to produce micropores and mesopores, respectively. The variation in concentration ratios of dual templates and hydrothermal synthesis conditions resulted in production of multi-lamellar MFI and the hybrid lamellar-bulk MFI (HLBM) zeolite structures. The relationship between the morphology, porosity, acidity, and catalytic properties of these catalysts was systematically studied. Then, the validity of the proposed synthesis approach for production of other types of zeolites composites was examined by creating a meso-/microporous bulk polymorph A (BEA)-lamellar MFI (BBLM) composite. The resulted composite samples showed higher catalytic stability compared to their single component zeolites. The studies demonstrated the high potential of the one-step dual template synthesis procedure for engineering the textural and catalytic properties of the synthesized zeolites.
Resumo:
We point out that in the early universe, for temperatures in the approximate interval 150-80 MeV (after the quark-gluon plasma), pions carried a large share of the entropy and supported the largest inhomogeneities. Its thermal conductivity (previously calculated) allows the characterization of entropy production due to equilibration (damping) of thermal fluctuations. Simple model distributions of thermal fluctuations are considered and the associated entropy production evaluated.
Resumo:
International audience
Resumo:
International audience
Resumo:
Free-riding behaviors exist in tourism and they should be analyzed from a comprehensive perspective; while the literature has mainly focused on free riders operating in a destination, the destinations themselves might also free ride when they are under the umbrella of a collective brand. The objective of this article is to detect potential free-riding destinations by estimating the contribution of the different individual destinations to their collective brands, from the point of view of consumer perception. We argue that these individual contributions can be better understood by reflecting the various stages that tourists follow to reach their final decision. A hierarchical choice process is proposed in which the following choices are nested (not independent): “whether to buy,” “what collective brand to buy,” and “what individual brand to buy.” A Mixed Logit model confirms this sequence, which permits estimation of individual contributions and detection of free riders.