515 resultados para hematite
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.
Resumo:
The Deccan Volcanic Province (DVP) was built up by three major phases of eruptions; the most voluminous of which, the Deccan Phase 2, encompassed the Cretaceous–Palaeogene (KT) boundary. Deccan eruptions have been implicated as a contributor to the end-Cretaceous mass extinction, however, mechanism by which volcanic activity affected biota remains poorly understood. We applied a combination of rock magnetic techniques scanning electron microscopy to characterize mineral assemblages of three sections of intertrappean lacustrine sediments from the north-western Maharashtra Deccan Volcanic Provinces. Our results indicate that in sediments deposited during the early stages of the Deccan Phase 2, the Daïwal River and Dhapewada sequences, iron-bearing mineral association is dominated by detrital iron oxides (magnetite and hematite) sourced from the weathering of the surrounding basaltic bedrocks, with minor contribution form authigenic iron sulphides (framboidal pyrite, pyrrhotite and/or greigite). The sediments deposited during the final stages of Phase 2 (the Podgawan sequence) differ significantly in their characteristics. In particular, the Podgawan sediments have 1) very low magnetic susceptibility values, but higher terrigenous fraction (clays and shales) content; 2) more complex assemblage of magnetic minerals, 3) ubiquitous presence of Fe–Ca–Ce vanadates; and 4) unusual lithological variations in the middle part of the section (represented by a charcoal-rich level that is capped by a red clay layer containing fossilized bacterial colonies). We suggest that these unusual characteristics reflect increased acidity in the region during the deposition of the Podgawan sequence, likely due to cumulative effects of volcanic aerosols released during the Deccan Phase 2 eruptions. The combination of these features may be used to recognize episodes of increased acidity in the geological record. Our results also contribute to understanding of local vs. global effects of the Deccan volcanism.
Resumo:
The present work was done on two ambrotypes and two tintypes. It aimed evaluate their chemical and physical characteristics, especially their degradation patterns. Moreover, to understand the materials used for their production and cross-check analytical and historical information about the production processes. To do so multi-analytical, non-destructive methods were applied. Technical photography highlighted the surface morphology of the objects and showed the distribution of the protective coatings on their surfaces through UV radiation, which were very different between the four pieces. OM allowed for a detailed observation of the surfaces along with the selection of areas of interest to be analysed with SEM-EDS. SEM-EDS was the technique used most extensively and the one that provided the most insightful results: it allowed to observe the morphology of the image forming particles and the differences between highlights, dark areas and the interfaces between them. Also, elemental point analysis and elemental maps were used to identify the image forming particles as silver and to detect the presence of compounds related to the production, particularly gold used to highlight jewellery, iron as the red pigment and traces of the compounds used in the photographic process containing Ag, I, Na and S . Also, some degradation compounds were analysed containing Ag, Cu, S and Cl. With μ-FT-IR the presence of collodion was confirmed and the source of the protective varnishes was identified, particularly mastic and shellac, in either mixtures of the two or only one. μ-Raman detected the presence of metallic silver and silver chloride on the objects and identified one of the red pigments as Mars red. Finally, μ-XRD showed the presence of metallic silver and silver iodide on both ambrotypes and tintypes and hematite, magnetite and wuestite on the tintypes; RESUMO: O presente estudo foi desenvolvido sobre dois ambrótipos e dois ferrótipos. O propósito consiste em estudar as suas características químicas e físicas, dando particular ênfase aos padrões de degradação. Também é pretendido compreender os materiais usados na sua produção e relacionar esta informação analítca com dados históricos de manuais técnicos contemporâneos à produção dos objectos. Para tal foram utilizadas técnicas multi-analíticas e não destrutivas. O uso da fotografia técnica permitiu uma observação da morfologia das superficies dos objectos e da distribuição das camadas de verniz através da radiação UV, muito diferente entre os quatro. A microscopia óptica proporcionou uma observação detalhada das superfícies assim como a selecção de pontos de interesse para serem analisados com SEM-EDS. SEM-EDS foi a técnica usada mais extensivamente e a que proporcionou os resultados mais detalhados: observação da morofologia das partículas formadoras da imagem e as diferenças entre zonas de altas luzes, baixas luzes e as interfaces entre elas. A análise elemental e os mapas elementares foram usados para detectar prata nas partículas formadoras da imagem e a presença de compostos relacionados com a produção, em particular ouro utilizado para realçar joalharia, ferro no pigmento vermelho e vestígios de compostos utilizados no processo fotográfico incluindo Ag, I, Na e S. Do mesmo modo, alguns compostos de degradação foram analisados contendo Ag, Cu, S e Cl. Com μ-FT-IR a presença de colódio foi confirmada e identificada a origem dos vernizes, mástique e goma-laca, tanto em misturas dos dois como apenas um. Com μ-Raman foi detectada a presença de prata metálica e de cloreto de prata e identificado um dos pigmentos vermelhos como Mars red. Finalmente, μ-DRX revelou a presença de prata metálica e iodeto de prata tanto nos ambrótipos como nos ferrótipos e hematite, magnetite e wuestite nos ferrótipos.
Resumo:
Over the course of evolution, Nature has elegantly learned to use light to drive chemical reactions. On the other hand, humans have only recently started learning how to play with this powerful tool to carry out chemical transformations. In particular, a step forward was possible thanks to molecules and materials that can absorb light and trigger a series of processes that can drive chemical reactions. However, scarce elements are extensively employed in the design of most of these compounds and considerations on their scarcity and toxicity have sparked interest on alternatives based on earth-abundant elements. In this framework, the focus of this thesis has been the development and employment of heavy-metal free chromophores and of earth-abundant oxides. The first chapter regards the functionalization of boron-dipyrromethenes (BODIPYs) so as to allow access to their triplet excited state and tune their redox potentials, which was achieved thanks to the design of orthogonal donor-acceptor dyads. The BODIPY dyads were used to promote a photoredox reaction, and the mechanism of the reaction was clarified. In the second chapter, organic chromophores that display thermally-activated delayed fluorescence (TADF) were studied. These were used to perform enantioselective photoredox reactions, and a mechanistic investigation allowed to elucidate the fate of these photosensitizers in the reaction. Thanks to their stronger reducing power, it was possible to demonstrate the employability of TADF dyes in artificial photosynthesis, as well. Last, the oxidation of biomass-derived compounds was studied in a photoelectrochemical cell. For this purpose, hematite photoanodes were synthesized in collaboration with Prof. Caramori’s group at the University of Ferrara (Italy) and they were tested in the presence of a redox mediator. In addition to this, the possibility of repurposing a copper(II) water oxidation catalyst for the oxidation of biomass was investigated in collaboration with Prof. Llobet’s group at ICIQ (Tarragona, Spain).
Resumo:
The historical iron ore deposits of eastern Elba held great importance for the region and were its primary source of iron. The Torre di Rio skarn, despite its easily accessible outcrop and vicinity to the larger Rio Marina deposit, was never properly characterized. The results of petrographic and microthermometric study presented in this work provide new constraints on the Torre di Rio skarn. Mineral assemblage of ilvaite, calcite, quartz, iron oxides and sulphides combined with textural evidence indicate that Torre di Rio skarn does not fit into classical skarn model. The complex paragenetic sequence and overlapping of skarn and ore mineralogy is result of fast formation at relatively low temperatures evidenced by the silicon enrichment and pervasive nature of limonite alteration. Hematite-magnetite textural relationship points to boundary conditions of the ore fluid in terms of oxygen fugacity. Eutectic temperatures range from -16 to -33 °C indicating complex fluids. Calculated salinities range from 1.4 to 17.4 wt% NaCleq suggesting multiple fluids of different compositions. Total homogenization temperatures vary from 330 °C to 150 °C with both homogeneously and heterogeneously trapped FIAs. Ore deposition is concentrated where skarn formation was controlled primarily by phase separation during boiling. Calculated fluid pressure at boiling suggest shallow formation depth of a few hundred meters and constrains maximum temperature of ore deposition to c. 260 °C. This work suggest that relatively low salinities of fluid inclusions could indicate dominant marine origin of the hydrothermal fluids that were activated by the Porto Azzurro pluton emplacement and that scavenged Fe from sedimentary host rocks. During boiling at shallow depths and decreasing iron solubility, these fluids started precipitating Fe-minerals at Torre di Rio mineralization. Mixing with batches of more saline fluids at around 236 °C increased salinity abruptly and marked the end of ore deposition.