521 resultados para harmonics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many applications, including communications, test and measurement, and radar, require the generation of signals with a high degree of spectral purity. One method for producing tunable, low-noise source signals is to combine the outputs of multiple direct digital synthesizers (DDSs) arranged in a parallel configuration. In such an approach, if all noise is uncorrelated across channels, the noise will decrease relative to the combined signal power, resulting in a reduction of sideband noise and an increase in SNR. However, in any real array, the broadband noise and spurious components will be correlated to some degree, limiting the gains achieved by parallelization. This thesis examines the potential performance benefits that may arise from using an array of DDSs, with a focus on several types of common DDS errors, including phase noise, phase truncation spurs, quantization noise spurs, and quantizer nonlinearity spurs. Measurements to determine the level of correlation among DDS channels were made on a custom 14-channel DDS testbed. The investigation of the phase noise of a DDS array indicates that the contribution to the phase noise from the DACs can be decreased to a desired level by using a large enough number of channels. In such a system, the phase noise qualities of the source clock and the system cost and complexity will be the main limitations on the phase noise of the DDS array. The study of phase truncation spurs suggests that, at least in our system, the phase truncation spurs are uncorrelated, contrary to the theoretical prediction. We believe this decorrelation is due to the existence of an unidentified mechanism in our DDS array that is unaccounted for in our current operational DDS model. This mechanism, likely due to some timing element in the FPGA, causes some randomness in the relative phases of the truncation spurs from channel to channel each time the DDS array is powered up. This randomness decorrelates the phase truncation spurs, opening the potential for SFDR gain from using a DDS array. The analysis of the correlation of quantization noise spurs in an array of DDSs shows that the total quantization noise power of each DDS channel is uncorrelated for nearly all values of DAC output bits. This suggests that a near N gain in SQNR is possible for an N-channel array of DDSs. This gain will be most apparent for low-bit DACs in which quantization noise is notably higher than the thermal noise contribution. Lastly, the measurements of the correlation of quantizer nonlinearity spurs demonstrate that the second and third harmonics are highly correlated across channels for all frequencies tested. This means that there is no benefit to using an array of DDSs for the problems of in-band quantizer nonlinearities. As a result, alternate methods of harmonic spur management must be employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed generation systems must fulfill standards specifications of current harmonics injected to the grid. In order to satisfy these grid requirements, passive filters are connected between inverter and grid. This work compares the characteristic response of the traditional inductive (L) filter with the inductive-capacitive-inductive (LCL) filter. It is shown that increasing the inductance L leads to a good ripple current suppression around the inverter switching frequency. The LCL filter provides better harmonic attenuation and reduces the filter size. The main drawback is the LCL filter impedance, which is characterized by a typical resonance peak, which must be damped to avoid instability. Passive or active techniques can be used to damp the LCL resonance. To address this issue, this dissertation presents a comparison of current control for PV grid-tied inverters with L filter and LCL filter and also discuss the use of active and passive damping for different regions of resonance frequency. From the mathematical models, a design methodology of the controllers was developed and the dynamic behavior of the system operating in closed loop was investigated. To validate the studies developed during this work, experimental results are presented using a three-phase 5kW experimental platform. The main components and their functions are discussed in this work. Experimental results are given to support the theoretical analysis and to illustrate the performance of grid-connected PV inverter system. It is shown that the resonant frequency of the system, and sampling frequency can be associated in order to calculate a critical frequency, below which is essential to perform the damping of the LCL filter. Also, the experimental results show that the active buffer per virtual resistor, although with a simple development, is effective to damp the resonance of the LCL filter and allow the system to operate stable within predetermined parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)— Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a eduction to a cubic nonlinear Schr{\"o}dinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, symptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt \& Wattis, {\em J Phys A}, {\bf 39}, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless charging technology extends the battery autonomy by allowing more flexible and practical ways of recharging it even when the electric vehicle is on move. The frequency conversion, which is required to generate a kHz-ranged magnetic field, also leads to considerable harmonics. As a result, the power factor and the corresponding efficiency decrement. This paper proposes a Power Factor Corrector which overcomes this drawback. The most relevant feature of the designed Power Factor Corrector is that it does not need any electrical signal from the secondary side to adjust its operation properly. The simulation results show the ability of the proposed scheme to increment the system efficiency for different State-Of-Charge in the Battery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo muestra el avance que se tiene en el proyecto denominado “Diseño y Construcción de un Nano-Satélite”, que se lleva a cabo en la ESIME U.P.-Ticoman del Instituto Politécnico Nacional. Este proyecto tiene como objetivo principal introducir a los alumnos en el que hacer espacial, se trata de un satélite con un peso de un kilogramo y es un cubo de 10 cm de lado y cuya carga útil tiene MEMS (sistema de micro-electromecánicos) que harán las veces de péndulo electrónico, lo anterior y los armónicos gravitacionales permitirán determinar la forma de la tierra. Se presenta el fundamento matemático, los componentes del satélite, el diseño preliminar de la estructura, la manufactura de la estructura, los resultados de un ensaye estructural destructivo y el análisis estático por elementos finitos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional direct numerical simulations (DNS) have been performed on a finite-size hemispherecylinder model at angle of attack AoA = 20◦ and Reynolds numbers Re = 350 and 1000. Under these conditions, massive separation exists on the nose and lee-side of the cylinder, and at both Reynolds numbers the flow is found to be unsteady. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed in order to study the primary instability that triggers unsteadiness at Re = 350. The dominant coherent flow structures identified at the lower Reynolds number are also found to exist at Re = 1000; the question is then posed whether the flow oscillations and structures found at the two Reynolds numbers are related. POD and DMD computations are performed using different subdomains of the DNS computational domain. Besides reducing the computational cost of the analyses, this also permits to isolate spatially localized oscillatory structures from other, more energetic structures present in the flow. It is found that POD and DMD are in general sensitive to domain truncation and noneducated choices of the subdomain may lead to inconsistent results. Analyses at Re = 350 show that the primary instability is related to the counter rotating vortex pair conforming the three-dimensional afterbody wake, and characterized by the frequency St ≈ 0.11, in line with results in the literature. At Re = 1000, vortex-shedding is present in the wake with an associated broadband spectrum centered around the same frequency. The horn/leeward vortices at the cylinder lee-side, upstream of the cylinder base, also present finite amplitude oscillations at the higher Reynolds number. The spatial structure of these oscillations, described by the POD modes, is easily differentiated from that of the wake oscillations. Additionally, the frequency spectra associated with the lee-side vortices presents well defined peaks, corresponding to St ≈ 0.11 and its few harmonics, as opposed to the broadband spectrum found at the wake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) is a helpful tool to understand how a battery is behaving and how it degrades. One of the disadvantages is that it is typically an 'off-line' process. This paper investigates an alternative method of looking at impedance spectroscopy of a battery system while it is on-line and operational by manipulating the switching pattern of the dc-dc converter to generate low frequency harmonics in conjunction with the normal high frequency switching pattern to determine impedance in real time. However, this adds extra ripple on the inductor which needs to be included in the design calculations. The paper describes the methodology and presents some experimental results in conjunction with EIS results to illustrate the concept.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert's method [24] is employed, which generates a Galerkin-type procedure for the numerical solution via rewriting the boundary integrals over the unit sphere and expanding the densities in terms of spherical harmonics. Numerical results are included as well.