992 resultados para glycolytic enzyme binding
Resumo:
YAP4, a member of the yeast activator protein (YAP) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response.
Resumo:
Molecularly imprinted polymers (MIP) were used as potentiometric sensors for the selective recognition and determination of chlormequat (CMQ). They were produced after radical polymerization of 4-vinyl pyridine (4-VP) or methacrylic acid (MAA) monomers in the presence of a cross-linker. CMQwas used as template. Similar nonimprinted (NI) polymers (NIP) were produced by removing the template from reaction media. The effect of kind and amount of MIP or NIP sensors on the potentiometric behavior was investigated. Main analytical features were evaluated in steady and flow modes of operation. The sensor MIP/4-VP exhibited the best performance, presenting fast near-Nernstian response for CMQover the concentration range 6.2×10-6 – 1.0×10-2 mol L-1 with detection limits of 4.1×10-6 mol L-1. The sensor was independent from the pH of test solutions in the range 5 – 10. Potentiometric selectivity coefficients of the proposed sensors were evaluated over several inorganic and organic cations. Results pointed out a good selectivity to CMQ. The sensor was applied to the potentiometric determination of CMQin commercial phytopharmaceuticals and spiked water samples. Recoveries ranged 96 to 108.5%.
Resumo:
The TEM family of enzymes has had a crucial impact on the pharmaceutical industry due to their important role in antibiotic resistance. Even with the latest technologies in structural biology and genomics, no 3D structure of a TEM- 1/antibiotic complex is known previous to acylation. Therefore, the comprehension of their capability in acylate antibiotics is based on the protein macromolecular structure uncomplexed. In this work, molecular docking, molecular dynamic simulations, and relative free energy calculations were applied in order to get a comprehensive and thorough analysis of TEM-1/ampicillin and TEM-1/amoxicillin complexes. We described the complexes and analyzed the effect of ligand binding on the overall structure. We clearly demonstrate that the key residues involved in the stability of the ligand (hot-spots) vary with the nature of the ligand. Structural effects such as (i) the distances between interfacial residues (Ser70−Oγ and Lys73−Nζ, Lys73−Nζ and Ser130−Oγ, and Ser70−Oγ−Ser130−Oγ), (ii) side chain rotamer variation (Tyr105 and Glu240), and (iii) the presence of conserved waters can be also influenced by ligand binding. This study supports the hypothesis that TEM-1 suffers structural modifications upon ligand binding.
Resumo:
Eur. J. Biochem. 271, 2361–2369 (2004)
Resumo:
In order to define an accurate assay for anti-adenovirus antibody detection, a recently developed ELISA was compared with IFA and CF. On 58 sera, the ELISA was more sensitive than both CF and IFA, which showed relative sensitivities of 63% and 94%, respectively. It was not possible to determine the exact specificity of the tests because of the lack of a gold standard. Furthermore, the ELISA was used to define the prevalence of adenovirus antibodies in 116 infants between 1 and 24 months old (mean 7.28). The data showed that maternal antibodies waned by the age of 5 to 6 months and that more than 80% of the children had been infected by adenoviruses by the age of 10 months.
Resumo:
Journal of Bacteriology (Apr 2006) 3024-3036
Resumo:
Sera from 472 Brazilian subjects, confirmed to be either positive or negative for HIV antibodies and comprising the total clinical spectrum of HIV infection, were utilized in the evaluation of six commercially available enzyme-linked immunosorbent assays (ELISA), as well as of four alternative assays, namely indirect immunofluorescence (IIF), passive hemagglutination (PHA), dot blot and Karpas AIDS cell test. The sensitivities ranged from 100% (Abbott and Roche ELISA) to 84.2% (PHA) and the specificities ranged from 99.3% (IIF) to 80.2% (PHA). The sensitivity and specificity of the PHA and the sensitivity of the Karpas cell test were significantly lower than those of the other tests. Although the IFF and dot blot had good sensitivities and specificities, the six ELISA were more attractive than those tests when other parameters such as ease of reading and duration of assay were considered.
Resumo:
An enzyme-linked immunosorbent assay (ELISA) for measles antibodies was compared with Plaque Neutralization (PRN), Haemagglutination inhibition (HI) and Fluorescent antibody (IFA) tests in 181 sera from vaccinated children and umbilical cord. Of 179 positive samples by the sensitive PRN, only two, with titers of 8, were negative by ELISA (copositivity of 98.9%). IFA and HI presented, respectively, copo-sitivities of 93.3% and 82.7%. The ELISA presented a high sensitivity as well as a good reproducibility and represents an alternative for the time consuming PRN for detection of low measles antibodies.
Resumo:
An Enzyme-linked immunosorbent assay ELISA was evaluated for the detection of IgA antibodies in the human leptospirosis. The assay proved to be sensitive and specific when compared with the ELISA-IgM, in the examinated serum samples. The results found suggest that IgA antibodies became positive later in leptospirosis, and will can be an evolutive indicator in the development of the disease
Resumo:
Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.
Resumo:
Hydatid disease in tropical areas poses a serious diagnostic problem due to the high frequence of cross-reactivity with other endemic helminthic infections. The enzyme-linked-immunosorbent assay (ELISA) and the double diffusion arc 5 showed respectively a sensitivity of 73% and 57% and a specificity of 84-95% and 100%. However, the specificity of ELISA was greatly increased by using ovine serum and phosphorylcholine in the diluent buffer. The hydatic antigen obtained from ovine cyst fluid showed three main protein bands of 64,58 and 30 KDa using SDS PAGE and immunoblotting. Sera from patients with onchocerciasis, cysticercosis, toxocariasis and Strongyloides infection cross-reacted with the 64 and 58 KDa bands by immunoblotting. However, none of the analyzed sera recognized the 30 KDa band, that seems to be specific in this assay. The immunoblotting showed a sensitivity of 80% and a specificity of 100% when used to recognize the 30 KDa band.
Resumo:
Dissertation presented to obtain the Ph.D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
A new serological test, the gelatin particle agglutination test (GPAT), was used for the serodiagnosis of schistosomiasis mansoni. This technique showed the sensitivity (90.6%) and specificity (97.8%) close to those of enzyme-linked immunosorbent assay. The GPAT can be easily and rapidly performed without specialized equipment, by using lyophilized antigen-coated gelatin particles. The test also seems to be useful for mass screening of Schistosoma infection in field conditions.
Resumo:
Dissertation presented to obtain the Doctorate degree (Ph.D.) in Biology at Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
A dot-enzyme-linked immunosorbent assay (Dot-ELISA) for pneumococcal antigen detection was standardized in view of the need for a rapid and accurate immunodiagnosis of acute pneumococcal pneumonia. A total of 442 pleural fluid effusion samples (PFES) from children with clinical and laboratory diagnoses of acute bacterial pneumonia, plus 38 control PFES from tuberculosis patients and 20 negative control serum samples from healthy children were evaluated by Dot-ELISA. The samples were previously treated with 0.1 M EDTA pH 7.5 at 90°C for 10 min and dotted on nitrocellulose membrane. Pneumococcal omniserum diluted at 1:200 was employed in this assay for antigen detection. When compared with standard bacterial culture, counterimmunoelectrophoresis and latex agglutination techniques, the Dot-ELISA results showed relative indices of 0.940 to sensitivity, 0.830 to specificity and 0.760 to agreement. Pneumococcal omniserum proved to be an optimal polyvalent antiserum for the detection of pneumococcal antigen by Dot-ELISA. Dot-ELISA proved to be a practical alternative technique for the diagnosis of pneumococcal pneumonia.