915 resultados para geometric reasoning
Resumo:
2000 Mathematics Subject Classi cation: 60J80, 60F25.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60G70.
Resumo:
Case-based Reasoning's (CBR) origins were stimulated by a desire to understand how people remember information and are in turn reminded of information, and that subsequently it was recognized that people commonly solve problems by remembering how they solved similar problems in the past. Thus CBR became an appropriate way to find out the most suitable solution method for a new problem based on the old methods for the same or even similar problems. The research highlights how to use CBR to aid biologists in finding the best method to cryo preserve algae. The study found CBR could be used successfully to find the similarity percentage between the new algae and old cases in the case base. The prediction result showed approximately 93.75% accuracy, which proves the CBR system can offer appropriate recommendations for most situations. © 2011 IEEE.
Resumo:
When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Resumo:
The medial pFC (mPFC) is frequently reported to play a central role in Theory of Mind (ToM). However, the contribution of this large cortical region in ToM is not well understood. Combining a novel behavioral task with fMRI, we sought to demonstrate functional divisions between dorsal and rostral mPFC. All conditions of the task required the representation of mental states (beliefs and desires). The level of demands on cognitive control (high vs. low) and the nature of the demands on reasoning (deductive vs. abductive) were varied orthogonally between conditions. Activation in dorsal mPFC was modulated by the need for control, whereas rostral mPFC was modulated by reasoning demands. These findings fit with previously suggested domain-general functions for different parts of mPFC and suggest that these functions are recruited selectively in the service of ToM.
Resumo:
Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM.
Resumo:
The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
A reálopciók a döntési rugalmasság megtestesítőiként jelen vannak a vállalatvezetők mindennapjaiban, és cégtől függően jelentős értéket képviselhetnek. Értékelésük a hagyományos diszkontált pénzáramlás módszerekkel csak korlátozottan lehetséges, ezért alternatívaként felmerül a pénzügyi opcióárazás módszertana, amelynek hagyományos változatai az alaptermék alakulásáról geometriai Brown-mozgást feltételeznek. A cikk ezt a feltevést veszi górcső alá a reálopciókra történő alkalmazás szempontjából, és megmutatja, hogy habár önkényesnek tűnhet, valójában nem pusztán egy matematikai szempontból kényelmes megoldás, hanem pénzügyileg is elfogadható feltétel. _______ Real options represent the fl exibility of decision-making, and are thus part of the everyday work of corporate executives, often having great value. Valuing them with the use of traditional Discounted Cash Flow models has limited relevance, therefore arises the alternative methodology of fi nancial option pricing, the traditional versions of which assume that the price of the underlying asset follows Geometric Brownian Motion. The paper examines this assumption from the aspect of real option valuation and shows that although it might seem arbitrary, it is not only a mathematically convenient choice, but also a fi nancially acceptable one.
Resumo:
Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^
Resumo:
Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^
Resumo:
This study explored the differential effects of single-sex versus coed education on the cognitive and affective development of young women in senior year of high school. The basic research question was: What are the differential effects of single-sex versus coed education on the development of mathematical reasoning ability, verbal reasoning ability, or self-concept of high school girls?^ This study was composed of two parts. In the first part, the SAT verbal and mathematical ability scores were recorded for those subjects in the two schools from which the sample populations were drawn. The second part of the study required the application of the Piers-Harris Children's Self-Concept Scale to subjects in each of the two sample populations. The sample schools were deliberately selected to minimize between group differences in the populations. One was an all girls school, the other coeducational.^ The research design employed in this study was the causal-comparative method, used to explore causal relationships between variables that already exist. Based on a comprehensive analysis of the data produced by this research, no significant difference was found to exist between the mean scores of the senior girls in the single-sex school and the coed school on the SAT 1 verbal reasoning section. Nor was any significant difference found to exist between the mean scores of the senior girls in the single-sex school and the coed school on the SAT 1 mathematical reasoning section. Finally, no significant difference between the mean total scores of the senior girls in the single-sex school and the coed school on the Piers-Harris Children's Self-Concept Scale was found to exist.^ Contrary to what many other studies have found in the past about single-sex schools and their advantages for girls, this study found no support for such advantages in the cognitive areas of verbal and mathematical reasoning as measured by the SAT or in the affective area of self-concept as measured by the Piers-Harris Children's Self-Concept Scale. ^
Resumo:
Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed boundary conditions and the well conformed geometry. Any geometric model that contains gaps or open lines is considered an imperfect geometry model and major commercial solver packages are incapable of handling such inputs. Others packages apply different kinds of methods to resolve this problems like patching or zippering; but the final resolved geometry may be different from the original geometry, and the changes may be unacceptable. The study proposed in this dissertation is based on a new technique to process models with geometrical imperfection without the necessity to repair or change the original geometry. An algorithm is presented that is able to analyze the imperfect geometric model with the imposed boundary conditions using a meshfree method and a distance field approximation to the boundaries. Experiments are proposed to analyze the convergence of the algorithm in imperfect models geometries and will be compared with the same models but with perfect geometries. Plotting results will be presented for further analysis and conclusions of the algorithm convergence
Resumo:
Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications
Resumo:
We consider a class of initial data sets (Σ,h,K) for the Einstein constraint equations which we define to be generalized Brill (GB) data. This class of data is simply connected, U(1)²-invariant, maximal, and four-dimensional with two asymptotic ends. We study the properties of GB data and in particular the topology of Σ. The GB initial data sets have applications in geometric inequalities in general relativity. We construct a mass functional M for GB initial data sets and we show:(i) the mass of any GB data is greater than or equals M, (ii) it is a non-negative functional for a broad subclass of GB data, (iii) it evaluates to the ADM mass of reduced t − φi symmetric data set, (iv) its critical points are stationary U(1)²-invariant vacuum solutions to the Einstein equations. Then we use this mass functional and prove two geometric inequalities: (1) a positive mass theorem for subclass of GB initial data which includes Myers-Perry black holes, (2) a class of local mass-angular momenta inequalities for U(1)²-invariant black holes. Finally, we construct a one-parameter family of initial data sets which we show can be seen as small deformations of the extreme Myers- Perry black hole which preserve the horizon geometry and angular momenta but have strictly greater energy.
Resumo:
F. Meneguzzi thanks Fundaç ao de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil) for the financial support through the ACI program (Grant ref. 3541-2551/12-0) and the ARD program (Grant ref. 12/0808-5), as well as Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Universal Call (Grant ref. 482156/2013-9) and PQ fellowship (Grant ref. 306864/2013-4). N. Oren and W.W. Vasconcelos acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC, UK) within the research project “Scrutable Autonomous Systems” (SAsSY11, Grant ref. EP/J012084/1).