908 resultados para generalized additive models
Resumo:
Removing noise from signals which are piecewise constant (PWC) is a challenging signal processing problem that arises in many practical scientific and engineering contexts. In the first paper (part I) of this series of two, we presented background theory building on results from the image processing community to show that the majority of these algorithms, and more proposed in the wider literature, are each associated with a special case of a generalized functional, that, when minimized, solves the PWC denoising problem. It shows how the minimizer can be obtained by a range of computational solver algorithms. In this second paper (part II), using this understanding developed in part I, we introduce several novel PWC denoising methods, which, for example, combine the global behaviour of mean shift clustering with the local smoothing of total variation diffusion, and show example solver algorithms for these new methods. Comparisons between these methods are performed on synthetic and real signals, revealing that our new methods have a useful role to play. Finally, overlaps between the generalized methods of these two papers and others such as wavelet shrinkage, hidden Markov models, and piecewise smooth filtering are touched on.
Resumo:
Performance evaluation in conventional data envelopment analysis (DEA) requires crisp numerical values. However, the observed values of the input and output data in real-world problems are often imprecise or vague. These imprecise and vague data can be represented by linguistic terms characterised by fuzzy numbers in DEA to reflect the decision-makers' intuition and subjective judgements. This paper extends the conventional DEA models to a fuzzy framework by proposing a new fuzzy additive DEA model for evaluating the efficiency of a set of decision-making units (DMUs) with fuzzy inputs and outputs. The contribution of this paper is threefold: (1) we consider ambiguous, uncertain and imprecise input and output data in DEA, (2) we propose a new fuzzy additive DEA model derived from the a-level approach and (3) we demonstrate the practical aspects of our model with two numerical examples and show its comparability with five different fuzzy DEA methods in the literature. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
Background - The binding between peptide epitopes and major histocompatibility complex proteins (MHCs) is an important event in the cellular immune response. Accurate prediction of the binding between short peptides and the MHC molecules has long been a principal challenge for immunoinformatics. Recently, the modeling of MHC-peptide binding has come to emphasize quantitative predictions: instead of categorizing peptides as "binders" or "non-binders" or as "strong binders" and "weak binders", recent methods seek to make predictions about precise binding affinities. Results - We developed a quantitative support vector machine regression (SVR) approach, called SVRMHC, to model peptide-MHC binding affinities. As a non-linear method, SVRMHC was able to generate models that out-performed existing linear models, such as the "additive method". By adopting a new "11-factor encoding" scheme, SVRMHC takes into account similarities in the physicochemical properties of the amino acids constituting the input peptides. When applied to MHC-peptide binding data for three mouse class I MHC alleles, the SVRMHC models produced more accurate predictions than those produced previously. Furthermore, comparisons based on Receiver Operating Characteristic (ROC) analysis indicated that SVRMHC was able to out-perform several prominent methods in identifying strongly binding peptides. Conclusion - As a method with demonstrated performance in the quantitative modeling of MHC-peptide binding and in identifying strong binders, SVRMHC is a promising immunoinformatics tool with not inconsiderable future potential.
Resumo:
The author analyzes the localization procedures of the vector of weighting coefficients which are based on presenting the function of value by additive reduction adapted to fuzzy models of choice.
Resumo:
The conceptual foundations of the models and procedures for prediction of the avalanche-dangerous situations initiation are considered. The interpretation model for analysis of the avalanche-dangerous situations initiation based on the definition of probabilities of correspondence of studied parameters to the probabilistic distributions of avalanche-dangerous or avalanche non-dangerous situations is offered. The possibility to apply such a model to the real data is considered. The main approaches to the use of multiple representations for the avalanche dangerous situations initiation analysis are generalized.
Resumo:
A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.
Resumo:
Fuzzy data envelopment analysis (DEA) models emerge as another class of DEA models to account for imprecise inputs and outputs for decision making units (DMUs). Although several approaches for solving fuzzy DEA models have been developed, there are some drawbacks, ranging from the inability to provide satisfactory discrimination power to simplistic numerical examples that handles only triangular fuzzy numbers or symmetrical fuzzy numbers. To address these drawbacks, this paper proposes using the concept of expected value in generalized DEA (GDEA) model. This allows the unification of three models - fuzzy expected CCR, fuzzy expected BCC, and fuzzy expected FDH models - and the ability of these models to handle both symmetrical and asymmetrical fuzzy numbers. We also explored the role of fuzzy GDEA model as a ranking method and compared it to existing super-efficiency evaluation models. Our proposed model is always feasible, while infeasibility problems remain in certain cases under existing super-efficiency models. In order to illustrate the performance of the proposed method, it is first tested using two established numerical examples and compared with the results obtained from alternative methods. A third example on energy dependency among 23 European Union (EU) member countries is further used to validate and describe the efficacy of our approach under asymmetric fuzzy numbers.
Resumo:
2000 Mathematics Subject Classification: 62H12, 62P99
Resumo:
Exposure to counter-stereotypic gender role models (e.g., a woman engineer) has been shown to successfully reduce the application of biased gender stereotypes. We tested the hypothesis that such efforts may more generally lessen the application of stereotypic knowledge in other (non-gendered) domains. Specifically, based on the notion that counter-stereotypes can stimulate a lesser reliance on heuristic thinking, we predicted that contesting gender stereotypes would eliminate a more general group prototypicality bias in the selection of leaders. Three studies supported this hypothesis. After exposing participants to a counter-stereotypic gender role model, group prototypicality no longer predicted leadership evaluation and selection. We discuss the implications of these findings for groups and organizations seeking to capitalize on the benefits of an increasingly diverse workforce.
Resumo:
The notion of common prior is well-understood and widely-used in the incomplete information games literature. For ordinary type spaces the common prior is de�fined. Pint�er and Udvari (2011) introduce the notion of generalized type space. Generalized type spaces are models for various bonded rationality issues, for �nite belief hierarchies, unawareness among others. In this paper we de�ne the notion of common prior for generalized types spaces. Our results are as follows: the generalization (1) suggests a new form of common prior for ordinary type spaces, (2) shows some quantum game theoretic results (Brandenburger and La Mura, 2011) in new light.
Resumo:
The notion of common prior is well-understood and widely-used in the incomplete information games literature. For ordinary type spaces the common prior is defined. Pinter and Udvari (2011) introduce the notion of generalized type space. Generalized type spaces are models for various bonded rationality issues, for nite belief hierarchies, unawareness among others. In this paper we dene the notion of common prior for generalized types spaces. Our results are as follows: the generalization (1) suggests a new form of common prior for ordinary type spaces, (2) shows some quantum game theoretic results (Brandenburger and La Mura, 2011) in new light.
Resumo:
Az intertemporális döntések fontos szerepet játszanak a közgazdasági modellezésben, és azt írják le, hogy milyen átváltást alkalmazunk két különböző időpont között. A közgazdasági modellezésben az exponenciális diszkontálás a legelterjedtebb, annak ellenére, hogy az empirikus vizsgálatok alapján gyenge a magyarázó ereje. A gazdaságpszichológiában elterjedt általánosított hiperbolikus diszkontálás viszont nagyon nehezen alkalmazható közgazdasági modellezési célra. Így tudott gyorsan elterjedni a kvázi-hiperbolikus diszkontálási modell, amelyik úgy ragadja meg a főbb pszichológiai jelenségeket, hogy kezelhető marad a modellezés során. A cikkben azt állítjuk, hogy hibás az a megközelítés, hogy hosszú távú döntések esetén, főleg sorozatok esetén helyettesíthető a két hiperbolikus diszkontálás egymással. Így a hosszú távú kérdéseknél érdemes felülvizsgálni a kvázi-hiperbolikus diszkontálással kapott eredményeket, ha azok az általánosított hiperbolikus diszkontálási modellel való helyettesíthetőséget feltételezték. ____ Intertemporal choice is one of the crucial questions in economic modeling and it describes decisions which require trade-offs among outcomes occurring in different points in time. In economic modeling the exponential discounting is the most well known, however it has weak validity in empirical studies. Although according to psychologists generalized hyperbolic discounting has the strongest descriptive validity it is very complex and hard to use in economic models. In response to this challenge quasi-hyperbolic discounting was proposed. It has the most important properties of generalized hyperbolic discounting while tractability remains in analytical modeling. Therefore it is common to substitute generalized hyperbolic discounting with quasi-hyperbolic discounting. This paper argues that the substitution of these two models leads to different conclusions in long term decisions especially in the case of series; hence all the models that use quasi-hyperbolic discounting for long term decisions should be revised if they states that generalized hyperbolic discounting model would have the same conclusion.
Resumo:
The paper reviews some additive and multiplicative properties of ranking procedures used for generalized tournaments with missing values and multiple comparisons. The methods analysed are the score, generalised row sum and least squares as well as fair bets and its variants. It is argued that generalised row sum should be applied not with a fixed parameter, but a variable one proportional to the number of known comparisons. It is shown that a natural additive property has strong links to independence of irrelevant matches, an axiom judged unfavourable when players have different opponents.
Resumo:
Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.
Resumo:
Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^