911 resultados para foreground background segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the one-loop beta functions for the Type II superstring using the pure spinor formalism in a generic supergravity background. It is known that the classical pure spinor BRST symmetry puts the background fields on-shell. In this paper we show that the one-loop beta functions vanish as a consequence of the classical BRST symmetry of the action. © SISSA 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the color dependence of resin composites with the background color was evaluated. The objective was to measure since what thickness the color of the sample stops being influenced by the color of the background over which the resin is placed and the methodology used in experiment was based in analyzing the contrast of digital images of the sample over a black background. The results shown that since 0.8 mm the images contrast becomes almost constant; it prove that since this thickness the color of resin composite depends on the optical resin properties only. The experiment was repeated under three conditions of luminosity to evaluate the influence of it on the image contrast and the results obtained were identical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonrelativistic problem of a particle immersed in a triangular potential well, set forth by N. A. Rao and B. A. Kagali, is revised. It is shown that these researchers misunderstood the full meaning of the potential and obtained a wrong quantization condition. By exploring the space inversion symmetry, this work presents the correct solution to this problem with potential applications in electronics in a simple and transparent way. © Electronic Journal of Theoretical Physics. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity, and isotropy from each other. We focus both on isotropic estimators of nongaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced cosmic variances that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMBdata when searching for large-scale anomalies. Copyright © 2010 L. Raul Abramo and Thiago S. Pereira.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at extracting street centerlines from previously isolated street regions by using the image of laser scanning intensity. In this image, streets are easily identified, since they manifest as dark, elongate ribbons contrasting with background objects. The intensity image is segmented by using the region growing technique, which generates regions representing the streets. From these regions, the street centerlines are extracted in two manners. The first one is through the Steger lines detection method combined with a line length thresholding by which lines being shorter than a minimum length are removed. The other manner is by combining the skeletonization method of regions based on the Medial Axis Transform and with a pruning process to eliminate as much as possible the ramifications. Experiments showed that the Steger-based method provided results better than the method based on skeletonization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that γ 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of γ 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates. © 2012 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental recognition is very important for forensic human identification, mainly regarding the mass disasters, which have frequently happened due to tsunamis, airplanes crashes, etc. Algorithms for automatic, precise, and robust teeth segmentation from radiograph images are crucial for dental recognition. In this work we propose the use of a graph-based algorithm to extract the teeth contours from panoramic dental radiographs that are used as dental features. In order to assess our proposal, we have carried out experiments using a database of 1126 tooth images, obtained from 40 panoramic dental radiograph images from 20 individuals. The results of the graph-based algorithm was qualitatively assessed by a human expert who reported excellent scores. For dental recognition we propose the use of the teeth shapes as biometric features, by the means of BAS (Bean Angle Statistics) and Shape Context descriptors. The BAS descriptors showed, on the same database, a better performance (EER 14%) than the Shape Context (EER 20%). © 2012 IEEE.