917 resultados para finite Elemente Berechnung
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The non-homogenous aspect of periodontal ligament (PDL) has been examined using finite element analysis (FEA) to better simulate PDL behavior. The aim of this study was to assess, by 2-D FEA, the influence of non-homogenous PDL on the stress distribution when the free-end saddle removable partial denture (RPD) is partially supported by an osseointegrated implant. Material and Methods: Six finite element (FE) models of a partially edentulous mandible were created to represent two types of PDL (non-homogenous and homogenous) and two types of RPD (conventional RPD, supported by tooth and fibromucosa; and modified RPD, supported by tooth and implant [10.00x3.75 mm]). Two additional FE models without RPD were used as control models. The non-homogenous PDL was modeled using beam elements to simulate the crest, horizontal, oblique and apical fibers. The load (50 N) was applied in each cusp simultaneously. Regarding boundary conditions the border of alveolar ridge was fixed along the x axis. The FE software (Ansys 10.0) was used to compute the stress fields, and the von Mises stress criterion (sigma vM) was applied to analyze the results. Results: The peak of sigma vM in non-homogenous PDL was higher than that for the homogenous condition. The benefits of implants were enhanced for the non-homogenous PDL condition, with drastic sigma vM reduction on the posterior half of the alveolar ridge. The implant did not reduce the stress on the support tooth for both PDL conditions. Conclusion: The PDL modeled in the non-homogeneous form increased the benefits of the osseointegrated implant in comparison with the homogeneous condition. Using the non-homogenous PDL, the presence of osseointegrated implant did not reduce the stress on the supporting tooth.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.
Resumo:
A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.
Resumo:
We employ finite elements methods for the approximation of solutions of the Ginzburg-Landau equations describing the deconfinement transition in quantum chromodynamics. These methods seem appropriate for situations where the deconfining transition occurs over a finite volume as in relativistic heavy ion collisions. where in addition expansion of the system and flow of matter are important. Simulation results employing finite elements are presented for a Ginzburg-Landau equation based on a model free energy describing the deconfining transition in pure gauge SU(2) theory. Results for finite and infinite system are compared. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).
Resumo:
Back-to-back correlations of particle-antiparticle pairs are related to the in-medium mass-modification and squeezing of the quanta involved. They are predicted to appear when hot and dense hadronic matter is formed in high energy nucleus-nucleus collisions. The survival and magnitude of the back-to-back correlations (BBC) of boson-antiboson pairs generated by in-medium mass modifications are studied here in the case of a thermalized, finite-sized, spherically symmetric expanding medium. We show that the BBC signal indeed survives the finite-time emission, as well as the expansion and flow effects, with sufficient intensity to be observed at BNL Relativistic Heavy Ion Collider (RHIC).
Resumo:
Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T not equal0 for bosonic open strings with a constant gauge field F-ab coupled to the boundary. The construction is done in the framework of ther-mo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states have the interpretation of Dp-branes at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a Dp-brane state is computed and analyzed. It is interpreted as the entropy of the Dp-brane at finite temperature.
Resumo:
A general formulation of Thermo Field Dynamics using transformation generators that form the SU(1, 1) group, is presented and applied to the closed bosonic string and for bosonic D-p-brane with an external field.