939 resultados para ferric reductase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thioredoxin, with a redox-active disulfide/dithiol in the active site, is the major ubiquitous disulfide reductase responsible for maintaining proteins in their reduced state. In the present study, the cDNA encoding thioredoxin-1 (designated EsTrx1) was cloned from Chinese mitten crab Eriocheir sinensis by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EsTrx1 was of 641 bp, containing a 51 untranslated region (UTR) of 17 bp, a 3' UTR of 306 bp with a poly (A) tail, and an open reading frame (ORF) of 318 bp encoding a polypeptide of 105 amino acids. The high similarity of EsTrx1 with Trx1s from other animals indicated that EsTrx1 should be a new member of the Trx1 sub-family. Quantitative real-time PCR analysis revealed the presence of EsTrx1 transcripts in gill, gonad, hepato-pancreas, muscle, heart and haemocytes. The expression of EsTrx1 mRNA in haemocytes was up-regulated after Listonella anguillarum challenge, reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to elucidate its biological functions, EsTrx1 was recombined and expressed in E. coli BL21 (DE3). The rEsTrx1 was demonstrated to possess the expected redox activity in enzymatic analysis, and to be more potent than GSH in antioxidant capacity. These results together indicated that EsTrx1 could function as an important antioxidant in a physiological context, and perhaps is involved in the responses to bacterial challenge. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferric uptake regulator (Fur) is a global transcription regulator that is ubiquitous to Gram-negative bacteria and regulates diverse biological processes, including iron uptake, cellular metabolism, stress response, and production of virulence determinants. As a result, for many pathogenic bacteria, Fur plays a crucial role in the course of infection and disease development. In this study, the fur gene was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased Japanese flounder cultured in a local farm. TSS Fur can partially complement the defective phenotype of an Escherichia coli fur mutant. A TSS fur null mutant, TFM, was constructed. Compared to TSS, TFM exhibits reduced growth ability, aberrant production of outer membrane proteins, decreased resistance against host serum bactericidal activity, impaired ability to disseminate in host blood and tissues, and drastic attenuation in overall bacterial virulence in a Japanese flounder infection model. When used as a live vaccine administered via the injection, immersion, and oral routes, TFM affords high levels of protection upon Japanese flounder against not only P.fluorescens infection but also Aeromonas hydrophila infection. Furthermore, a plasmid, pJAQ, was constructed, which expresses the coding element of the Vibrio harveyi antigen AgaV-DegQ. TFM harboring pJAQ can secret AgaV-DegQ into the extracellular milieu. Vaccination of Japanese flounder with live TFM/pJAQ elicited strong immunoprotection against both V. harveyi and A. hydrophila infections. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edwardsiella tarda is a pathogen with a broad host range that includes human and animals. The E. tarda hemolysin (Eth) system, which comprises EthA and EthB, is a noted virulence element that is widely distributed in pathogenic isolates of E. tarda. Previous study has shown that the expression of ethB is regulated by iron, which suggests the possibility that the ferric uptake regulator (Fur) is involved in the regulation of ethB. The work presented in this report supports the previous findings and demonstrates that ethB expression was decreased under conditions when the E. tarda Fur (Fur(Et)) was overproduced, and enhanced when Fur(Et) was inactivated. We also identified a second ethB regulator, EthR, which is a transcription regulator of the GntR family. EthR represses ethB expression by direct interaction with the ethB promoter region. In addition to ethB, EthR also modulates, but positively, luxS expression and AI-2 production by binding to the luxS promoter region. The expression of ethR itself is subject to negative autoregulation; interference with this regulation by overexpressing ethR during the process of infection caused (i) drastic changes in ethB and luxS expressions, (ii) vitiation in the tissue dissemination and survival ability of the bacterium, and (iii) significant attenuation of the overall bacterial virulence. These results not only provide new insights into the regulation mechanisms of the Eth hemolysin and LuxS/AI-2 quorum sensing systems but also highlight the importance of these systems in bacterial virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gene-clone-library-based molecular approach was used to study the nirS-encoding bacteria-environment relationship in the sediments of the eutrophic Jiaozhou Bay. Diverse nirS sequences were recovered and most of them were related to the marine cluster I group, ubiquitous in estuarine, coastal, and marine environments. Some NirS sequences were unique to the Jiaozhou Bay, such as the marine subcluster VIIg sequences. Most of the Jiaozhou Bay NirS sequences had their closest matches originally detected in estuarine and marine sediments, especially from the Chesapeake Bay, indicating similarity of the denitrifying bacterial communities in similar coastal environments in spite of geographical distance. Multivariate statistical analyses indicated that the spatial distribution of the nirS-encoding bacterial assemblages is highly correlated with environmental factors, such as sediment silt content, NH4+ concentration, and OrgC/OrgN. The nirS-encoding bacterial assemblages in the most hypernutrified stations could be easily distinguished from that of the least eutrophic station. For the first time, the sedimentological condition was found to influence the structure and distribution of the sediment denitrifying bacterial community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

趋磁细菌(Magnetotactic bacteria)的研究是国际微生物学研究热点之一。趋磁细菌体内含有纳米单磁畴的氧化铁/硫化铁(Fe3O4或Fe3S4)晶体,称为磁小体。由于趋磁细菌营养条件要求苛刻,在环境中需要微好氧条件,且营养类型属于化能自养,使得培养趋磁细菌时常遇到问题。 本研究首先通过正交试验优化趋磁细菌AMB-1菌株培养条件,在培养条件铁源为奎尼酸铁0.02 mmol/L,装瓶量75% ,pH值6.7,温度25 ℃时,AMB-1 OD600达到0.440(1.166×109 cells/ml)。同时运用磁收集传代法,使带有磁小体的AMB-1细胞比例占95%以上(Cmag值稳定在1.9-2.0)。 在AMB-1具有较好的生物量,同时又具有较好的含磁小体细胞比例后,研究磁小体的变化过程。通过透射电镜观察磁小体变化过程,发现培养24 h细菌体内已有较小晶体形成(平均27 nm,n=188)且沿长轴分布;48 h晶体长大(平均43 nm,n=203)且形成分段链沿长轴排列;72 h晶体进一步成熟(平均50 nm,n=191)仍以分段链沿长轴排列;随后细菌逐渐衰亡磁小体变小,168 h可见部分自溶细菌中仍有磁小体链(平均37 nm,n=186);192 h细菌自溶磁小体链(平均33 nm,n=184)分散到环境中。 通过透射电镜在细胞水平上研究趋磁细菌细胞分裂时发现,磁小体在细菌分裂时采用两种分离方式:一种为磁小体分配到两个子细胞;另一种为磁小体只分配到一个子细胞。无磁小体的子细胞,在随后的生长过程又分为两种情况:一种为细胞逐渐产生磁小体,另一种为不再产生磁小体。这种现象的发现,解释了随着传代次数的增多,细菌磁性有所下降的原因(Cmag值降低)。 在对趋磁细菌磁小体合成机制的研究中,常使用基因敲除的办法获得缺陷型,并与野生型对比进行研究。但是,利用基因敲除获得缺陷型不仅操作繁琐并且所得缺陷型不稳定。本研究利用特殊的磁富集传代法,先将带有磁小体的菌体收集并连续传代,筛选获得了高磁菌株;利用这种方法,收集不含磁小体的菌体并连续传代,筛选获得了无磁菌株。 趋磁细菌磁小体在医疗、环保等领域具有广阔应用价值,但是目前由于趋磁细菌难以大规模培养,并且磁小体纯化存在成本高等原因,将磁小体真正实际应用尚有一段距离。通过研究磁小体在趋磁细菌中的变化过程发现,AMB-1菌株在培养192 h后自溶,并且磁小体随着细胞的破碎释放到环境中去。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

爱德华氏菌病是海水养殖鱼类牙鲆(Japanese flounder)的一种常见细菌病。迟缓爱德华氏菌的致病相关因子有凝血素、溶血素、铁载体、粘附素及侵袭素等,其中调控铁载体的蛋白即是铁调控蛋白(Ferric uptake regulator)Fur。 本论文首先用简并PCR及染色体步移的方法获得了迟缓爱德华氏菌fur基因(etfur)(GenBank 号EF197912),发现其氨基酸序列与大肠杆菌的fur基因(ecfur)的氨基酸序列有大约90%的相似性。功能分析表明迟缓爱德华氏菌Fur(Etfur)能与大肠杆菌的Fur(Ecfur)功能互补;功能域分析发现Etfur的C92和C95为功能所必需,而E112K突变则增强FurEt的抑制功能;启动子活性分析发现Etfur具有自我调控功能,随之通过定点突变及引物延伸的方法确定了etfur的启动子。为了研究Etfur的调控干扰作用,我们构建了Etfur过量表达菌株TX1/pJRTF,发现该菌株的生长速度明显比野生型菌株慢,而且其外膜蛋白的表达与野生型相比有明显差异;随后我们提取了差异蛋白,用反免疫方法筛选差异表达基因。进一步的毒力研究表明Etfur过量表达能使细菌毒力显著下降。分析迟缓爱德华氏菌溶血素基因(ethB)启动子活性发现Etfur能够调控ethB的表达。最后,我们构建了一个调控抑制子筛选系统,并由此筛选到另一个ethB调控因子EthR,该调控因子属于GntR调控蛋白家族;实验分析表明EthR是一个比Fur效应更强的调控因子。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

胸苷酸合成酶(thymidylate synthase,简称TS)和二氢叶酸还原酶(dihydrofolate reductase, 简称DHFR)都是叶酸依赖性酶,在维持DNA合成和DNA修复上发挥关键作用,并且多年来一直是肿瘤研究和化疗的重要靶点。我们前期的研究发现,TS和DHFR在翻译水平上存在负反馈调控机制。人TS和DHFR可以与其自身的mRNA结合,从而抑制mRNA的表达,化疗药物可以与TS或者DHFR相互作用,形成的复合物不能与TS mRNA结合, 使负反馈机制丧失。因此深入研究TS和DHFR的翻译调控机理,对阐明肿瘤抗药性机制,对发现新的抗肿瘤药物和肿瘤的治疗都具有十分重要的意义。 本论文利用mRNA体外展示技术,构建多肽库(约10万亿种多肽分子),利用多种实验手段将mRNA体外展示技术进行优化,提高了多肽库融合肽的产量,提高了mRNA体外展示技术筛选的特异性。将TS mRNA分子上的顺式因子TS30 RNA固定于磁珠上,将融合肽库与顺式因子作用,经过6轮循环,由多肽库中获得了与TS mRNA高度亲和的多肽序列,体外结合实验证明亲和肽可以与TS全长mRNA结合,体外翻译实验证明多肽可以抑制TS mRNA的翻译。并且利用phage display技术由噬菌体肽库(12个氨基酸随机肽库)经过四轮筛选,分别筛选到TS和DHFR的亲和肽,凝胶阻滞实验证明它们分别能与TS和DHFR mRNA结合。 本论文利用的展示技术可以广泛应用于特异靶点的蛋白质筛选,并且本论文筛选到的TS和DHFR亲和肽可以作为TS和DHFR的抑制剂,从而为获得新型的抗肿瘤药物奠定基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM).combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gustavo Chemale, Arjan J. van Rossum, James R. Jefferies, John Barrett, Peter M. Brophy, Henrique B. Ferreira, Arnaldo Zaha (2003). Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: causative agent of cystic hydatid disease. Proteomics, 3(8), 1633-1636. Sponsorship: CNPq / PADCT/CNPq / FAPERGS (Brazil)/ BBSRC (UK) RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SREBP (sterol response element binding proteins) transcription factors are central to regulating de novo biosynthesis of cholesterol and fatty acids. The SREBPs are regulated by retention or escape from the ER to the Golgi where they are proteolytically cleaved into active forms. The SREBP cleavage activating protein (SCAP) and the INSIG proteins are essential in this regulatory process. The aim of this thesis is to further characterise the molecular and cellular aspects surrounding regulation of SREBP processing. SREBP and SCAP are known to interact via their carboxy-terminal regulatory domains (CTDs) but this interaction is poorly characterised. Significant steps were achieved in this thesis towards specific mapping of the interaction site. These included cloning and over expression and partial purification of tagged SREBP1 and SREBP2 CTDs and probing of a SCAP peptide array with the CTDs. Results from the SREBP2 probing were difficult to interpret due to insolubility issues with the protein, however, probing with SREBP1 revealed five potential binding sites which were detected reproducibly. Further research is necessary to overcome SREBP2 insolubility issues and to confirm the identified SREBP1 interaction site(s) on SCAP. INSIG1 has a central role in regulating SREBP processing and in regulating stability of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate limiting enzyme in cholesterol biosynthesis. There are two protein isoforms of human INSIG1 produced through the use of two in-frame alternative start sites. Bioinformatic analysis indicated that the presence of two in-frame start sites within the 5-prime region of INSIG1 mRNA is highly conserved and that production of two isoforms of INSIG1is likely a conserved event. Functional differences between these two isoforms were explored. No difference in either the regulation of SREBP processing or HMGCR degradation between the INSIG1 isoforms was observed and the functional significance of the two isoforms is as yet unclear. The final part of this thesis focused on enhancing the cytotoxicity of statins by targeted inhibition of SREBP processing by oxysterols. Statins have significant potential as anti-cancer agents as they inhibit the activity of HMGCR leading to a deficiency in mevalonate which is essential for cell survival. The levels of HMGCR fluctuate widely due to cholesterol feedback of SREBP processing. The relationship between sterol feedback and statin mediated cell death was investigated in depth in HeLa cells. Down regulation of SREBP processing by sterols significantly enhanced the efficacy of statin mediated cell death. Investigation of sterol feedback in additional cancer cell lines showed that sterol feedback was absent in cell lines A- 498, DU-145, MCF-7 and MeWo but was present in cell lines HT-29, HepG2 and KYSE-70. In the latter inhibition of SREBP processing using oxysterols significantly enhanced statin cytotoxicity. The results indicate that this approach is valid to enhance statin cytotoxicity in cancer cells, but may be limited by deregulation of SREBP processing and off target effects of statins, which were observed for some of the cancer cell lines screened.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.