996 resultados para femtosecond laser pulses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode-locked lasers emitting a train of femtosecond pulses called dissipative solitons are an enabling technology for metrology, high-resolution spectroscopy, fibre optic communications, nano-optics and many other fields of science and applications. Recently, the vector nature of dissipative solitons has been exploited to demonstrate mode locked lasing with both locked and rapidly evolving states of polarisation. Here, for an erbium-doped fibre laser mode locked with carbon nanotubes, we demonstrate the first experimental and theoretical evidence of a new class of slowly evolving vector solitons characterized by a double-scroll chaotic polarisation attractor substantially different from Lorenz, Rössler and Ikeda strange attractors. The underlying physics comprises a long time scale coherent coupling of two polarisation modes. The observed phenomena, apart from the fundamental interest, provide a base for advances in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetisation in data storage devices and many other areas. © 2014 CIOMP. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We numerically demonstrate a new fiber laser architecture supporting spectral compression of negatively chirped pulses in passive normally dispersive fiber. Such a process is beneficial for improving the energy efficiency of the cavity as it prevents narrow spectral filtering from being highly dissipative. The proposed laser design provides an elegant way of generating transform-limited picosecond pulses. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors describe the operation of an actively modelocked Er fibre laser incorporating a chrped in fibre Bragg reflection grating as one end mirror to the cavity, acting as a lumped highly dispersive element. In one oreientation the grating shifted the cavity into normal dispersion regime and pulses of -25ps duration were produced. In the opposite oreintation, the cavity dispersion was anomalous and ~8ps pulses were produced with characterisitics typical of solitons propagating in a periodically perturbed system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed and demonstrated a nonlinear polarization-rotation-based fiber laser with two different operation states: passive mode-locking and multiwavelength emission. The intensity-dependent transmission or loss induced by nonlinear polarization rotation accounts for the distinct operation regimes. Our experiment results indicate that both passively mode-locked pulses and continuous-wave multiwavelength can be generated from the same fiber laser just through adjusting polarizations. Another characteristic of the current multiwavelength laser is that the used periodic filter is a birefringence fiber filter, which facilitates all-fiber integration of the fiber laser, so it is a potential multifunction laser source with all-fiber configuration and convenient manipulation. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present theoretical and numerical analysis of the femtosecond processing of silica by laser beam with power below self-focusing threshold. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broadband wavelength tunability over 136 nm (between 1182.5 nm and 1319 nm) of picosecond pulses in passive mode-locked regime is demonstrated in a multi-section quantum-dot laser in external cavity configuration at room temperature. The maximum peak power of 870 mW with 15 ps pulse duration was achieved at 1226 nm wavelength. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wavelength bistability and tunability are demonstrated in a two-sectional quantum-dot mode-locked laser with a nonidentical capping layer structure. The continuous wave output power of 30 mW (25 mW) and mode-locked average power of 27 mW (20 mW) are achieved for 1245 nm (1295 nm) wavelengths, respectively, under the injection current of 300 mA. The largest switching range of more than 50 nm and wavelength tuning range with picosecond pulses and stable lasing wavelengths between 1245 and 1295 nm are demonstrated for gain current of 300 and 330 mA. © 1995-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the current status of our research in mode-locked quantum-dot edge-emitting laser diodes, particularly highlighting the recent progress in spectral and temporal versatility of both monolithic and external-cavity laser configurations. Spectral versatility is demonstrated through broadband tunability and novel mode-locking regimes that involve distinct spectral bands, such as dual-wavelength mode-locking, and robust high-power wavelength bistability. Broad tunability of the pulse repetition rate is also demonstrated for an external-cavity mode-locked quantum-dot laser, revealing a nearly constant pulse peak power at different pulse repetition rates. High-energy and low-noise pulse generations are demonstrated for low-pulse repetition rates. These recent advances confirm the potential of quantum-dot lasers as versatile, compact, and low-cost sources of ultrashort pulses. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact picosecond all-room-temperature orange-to-red tunable laser source in the spectral region between 600 and 627 nm is demonstrated. The tunable radiation is obtained by second-harmonic generation in a periodically poled potassium titanyl phosphate (PPKTP) multimode waveguide using a tunable quantum-dot external-cavity mode-locked laser. The maximum second-harmonic output peak power of 3.91 mW at 613 nm is achieved for 85.94 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first self-mode-locked optically pumped quantum-dot semiconductor disk laser. Our mode-locked device emits sub-picosecond pulses at a wavelength of 1040 nm and features a record peak power of 460 W at a repetition rate of 1.5 GHz. In this work, we also investigate the temperature dependence of the pulse duration as well as the time-bandwidth product for stable mode locking. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning.