938 resultados para fabrication of GaN epitaxial films
Resumo:
A multiple-slot waveguide is presented and demonstrated through theoretical simulation. Taking a double-slot waveguide as an example, the results show a nearly 30% enhancement of optical intensity compared with the traditional single-slot waveguide with the same slot gap width. Therefore, the E-field intensity of the slot can be increased by adding another smaller slot. A double-slot waveguide with oxide and air as low index slot materials is realized experimentally and the formation processes of the slots are analyzed.
Resumo:
Sapphire substrates patterned by a selective chemical wet and an inductively coupled plasma (ICP) etching technique was proposed to improve the performance of GaN-based light-emitting diodes (LEDs). GaN-based LEDs were fabricated on sapphire substrates through metal organic chemical vapor deposition (MOCVD). The LEDs fabricated on the patterned substrates exhibit improved device performance compared with the conventional LED fabricated on planar substrates when growth and device fabricating conditions were the same. The light output powers of the LEDs fabricated on wet-patterned and ICP-patterned substrates were about 37% and 17% higher than that of LEDs on planar substrates at an injection current of 20 mA, respectively. The enhancement is attributable to the combination of the improvement of GaN-based epilayers quality and the improvement of the light extraction efficiency. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A triplexer is fabricated based on SOI arrayed waveguide gratings (AWGs). Three wavelengths of the triplexer operate at different diffraction orders of an arrayed waveguide grating. The signals of 1490 nm and 1550 nm, which are input from central input waveguide of an AWG, are demultiplexed and the signal of 1310 nm, which is input from central output waveguide of an AWG, is uploaded. The tested results show that the downloaded and uploaded signals have flat-top response. The insertion loss is 9 dB on chip, the nonadjacent crosstalk is less than -30 dB for 1490 nm and 1301 nm, and is less than -25 dB for 1550 nm, the 3 dB bandwidth equates that of the input light source.
Resumo:
The effect of the growth temperature on the surface and interface quality for the GaN/AlN multiquantum well (MQW) layer grown by metal-organic vapour chemical deposition is investigated. The obtained GaN/AlN MQW structure is almost coherent to the underlying AlGaN layer at improved growth conditions. With a relatively low growth temperature, the GaN/AlN MQW growth rate increases, the surface roughness reduces considerably and no macro steps are observed, resulting in a better periodicity of MQW.
Resumo:
A new method to fabricate nanoscale metallic air-bridges has been investigated. The pillar patterns of the air-bridge were defined on a SiO2, sacrificial layer by electron-beam lithography combined with inductively coupled plasma etching. Thereafter, the span (suspended part between the pillars) patterns were defined with a second electron-beam exposure on a PMMA/PMMA-MAA resist system. The fabrication process was completed by subsequent metal electron-beam evaporation, lift-off in acetone, and removal of the sacrificial layer in a buffered hydrofluoric (HF) solution. Air-bridges with two different geometries (line-shaped and cross-shaped) were studied in detail. The narrowest width of the air-bridges was around 200 nm, and the typical length of the air-bridges was 2-5 mu m. The advantages of our method are the simplicity of carrying out electron-beam exposure with good reproducibility and the capability of more accurate control of the pillar sizes and shapes of the air-bridge. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5 mu m x 800 mu m ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110mA and 10.5V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12 degrees and 32 degrees, respectively.
Resumo:
Origin of polarization sensitivity of photonic wire waveguides (PWWs) is analysed and the effective refractive indices of two different polarization states are calculated by the three-dimensional full-vector beam propagation method. We find that PWWs are polarization insensitive if the distribution of its refractive index is uniform and the cross section is square. An MRR based on such a polarization-insensitive PWW is fabricated on an 8-inch silicon-on-insulator wafer using 248-nm deep ultraviolet lithography and reactive ion etching. The quasi-TE mode is resonant at 1542.25 nm and 1558.90 nm, and the quasi-TM mode is resonant at 1542.12 nm and 1558.94 nm. The corresponding polarization shift is 0.13 nm at the shorter wavelength and 0.04 nm at the longer wavelength. Thus the fabricated device is polarization independent. The extinction ratio is larger than 10 dB. The 3 dB bandwidth is about 2.5 nm and the Qvalue is about 620 at 1558.90 nm.
Resumo:
A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector is proposed. In comparision with conventional i-CaN/n(+)-GaN structure, an additional thin p-GaN cap layer is introduced on the i-GaN(n(-)-GaN) in the new structure. The simulation results showed that the additional layer makes the dark current to decrease in the photodetector due to the increase of the Schottky barrier height. The effects of thickness and carrier concentration of p-GaN layer on the dark current of the photodetector were also studied. It is suggested that the dark current of the new structure device could be better reduced by employing p-GaN with higher carrier concentration as the cap layer.
Resumo:
Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.
Resumo:
Aluminum nitride (AIN) thin films were deposited on Si (111) substrates by low pressure metalorganic chemical vapor deposition system. The effects of the V/III ratios on the film structure and surface morphology were systematically studied. The chemical states and vibration modes of AIN films were characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. The optical absorption property of the AIN films, characterized by ultraviolet-visible-near infrared spectrophotometer, exhibited a sharp absorption near the wavelength of 206 mm. The AIN (002) preferential orientation growth was obtained at the V/III ratio of 10,000 and the preferential growth mechanism is presented in this paper according to the thermodynamics and kinetics process of the AIN growth.
Resumo:
The authors developed an inductively coupled plasma etching process for the fabrication of hole-type photonic crystals in InP. The etching was performed at 70 degrees C using BCl3/Cl-2 chemistries. A high etch rate of 1.4 mu m/min was obtained for 200 nm diameter holes. The process also yields nearly cylindrical hole shape with a 10.8 aspect ratio and more than 85 degrees straightness of the smooth sidewall. Surface-emitting photonic crystal laser and edge emitting one were demonstrated in the experiments.
Resumo:
In GaAs-based light-emitting diode (LED) or laser diode (LD), the forward voltage (V) will decrease linearly with the increasing junction temperature (T). This can be used as a convenient method to measure the junction temperature. In GaN-based LED, the relationship is linear too. But in GaN-based LD, the acceptor M (g) in p-GaN material can not ionize completely at-room temperature, and the carrier density will change with temperature. But we find finally that, this change won't lead to a nonlinear relationship of V-T. Our experiments show that it is Linear too.
Resumo:
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 degrees C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 degrees C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 degrees C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
We report on the design and fabrication of a photonic crystal (PC) channel drop filter based on an asymmetric silicon-on-insulator (SOI) slab. The filter is composed of two symmetric stick-shape micro-cavities between two single-line-defect (W1) waveguides in a triangular lattice, and the phase matching condition for the filter to improve the drop efficiency is satisfied by modifying the positions and radii of the air holes around the micro-cavities. A sample is then fabricated by using electron beam lithography (EBL) and inductively coupled plasma (ICP) etching processes. The measured 0 factor of the filter is about 1140, and the drop efficiency is estimated to be 73% +/- 5% by fitting the transmission spectrum.
Resumo:
The effect of thickness of the high-temperature (HT) AlN buffer layer on the properties of GaN grown on Si(111) has been investigated. Optical microscopy (OM), atomic force microscopy (AFM) and X-ray diffraction (XRD) are employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness of HT AlN buffer layer, and the optimized thickness of the HT AlN buffer layer is about 110 nm. Together with the low-temperature (LT) AlN interlayer, high-quality GaN epilayer with low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.