959 resultados para extended depth from focus reconstruction
Resumo:
Molecular and stable carbon isotope compositions of source-specific hydrocarbons have been used to reconstruct palaeoenvironmental conditions during deposition of the Middle Hettangian to Upper Sinemurian sediments on the northern epicontinental Tethys margin, Frick Swiss Jura. Increasing algal, cyanobacterial and phytoplanktonic (i.e., dinoflagellate) contributions associated with the C-13-enrichment of cyanobacteria derivatives (i.e., hopanes and monomethylalkanes) suggest enhanced primary productivity upsection. This is related to the C-13-enrichment of dissolved CO2 in the upper layers and the progressive increase of depth and oxygenation of the water column. In the Middle Hettangian shallow-water environments (lagoon), the occurrence of green sulfur bacteria (Chlorobiaceae) derivatives indicates that the lower part of the water column was strictly anoxic and rich in H2S. Since these bacteria require very low light intensity to grow, these euxinic conditions may be extended up to the photic zone, allowing for anaerobic photosynthesis. Light penetration depth is most likely reduced by high productivity and/or turbidity in the photic zone. In these sediments, C-13-depleted hopanoids (-39.5 parts per thousand) are most likely associated with phototrophic purple sulfur bacteria utilizing isotopically light organic carbon at the base of the aerobic zone. These purple sulfur bacteria may have consumed the H2S used by Chlorobiaceae in the deeper layers and thus, sustained the algae and cyanobacteria productivity in the upper layers. The C-13-depleted carbonate (-13.3 parts per thousand) may be partially related to the anaerobic oxidation of the organic matter during bacterial sulfate-reduction. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Eleven species of fleas were collected from 601 small rodents, from November 1995 to October 1997, in areas of natural focus of bubonic plague, including the municipalities of Nova Friburgo, Sumidouro and Teresópolis, State of Rio de Janeiro, Brazil. Among 924 fleas collected, Polygenis (Polygenis) rimatus (Rhopalopsyllidae) was the predominant species regarding the frequency, representing 41.3% (N:382), followed by P. (Neopolygenis) pradoi, representing 20% (N:185) and Craneopsylla minervaminerva (Stephanocircidae), representing 18.9% (N:175). The host Akodon cursor harbored 47.9% of these fleas. Other six host species were infested by 52.1% of the remaining fleas. Fleas were found on hosts and in places within the focus not previously reported by the literature.
Resumo:
The widespread use of digital imaging devices for surveillance (CCTV) and entertainment (e.g., mobile phones, compact cameras) has increased the number of images recorded and opportunities to consider the images as traces or documentation of criminal activity. The forensic science literature focuses almost exclusively on technical issues and evidence assessment [1]. Earlier steps in the investigation phase have been neglected and must be considered. This article is the first comprehensive description of a methodology to event reconstruction using images. This formal methodology was conceptualised from practical experiences and applied to different contexts and case studies to test and refine it. Based on this practical analysis, we propose a systematic approach that includes a preliminary analysis followed by four main steps. These steps form a sequence for which the results from each step rely on the previous step. However, the methodology is not linear, but it is a cyclic, iterative progression for obtaining knowledge about an event. The preliminary analysis is a pre-evaluation phase, wherein potential relevance of images is assessed. In the first step, images are detected and collected as pertinent trace material; the second step involves organising and assessing their quality and informative potential. The third step includes reconstruction using clues about space, time and actions. Finally, in the fourth step, the images are evaluated and selected as evidence. These steps are described and illustrated using practical examples. The paper outlines how images elicit information about persons, objects, space, time and actions throughout the investigation process to reconstruct an event step by step. We emphasise the hypothetico-deductive reasoning framework, which demonstrates the contribution of images to generating, refining or eliminating propositions or hypotheses. This methodology provides a sound basis for extending image use as evidence and, more generally, as clues in investigation and crime reconstruction processes.
Resumo:
Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE
Resumo:
This is the fourth annual report to the EMCDDA from the Norwegian Institute for Alcohol and Drug Research (SIRUS) on the drugs situation in Norway. The report has been drawn up in accordance with the new reporting guidelines introduced by the EMCDDA this year. We have endeavoured to follow these as consistently as possible, with the main focus on “new developments” and substantial changes in epidemiology, legislation and organisation. To allow readers to obtain more background information the report contains a number of references to the national report for 2003, and occasional references to the report for 2002.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
A differentiated reconstruction of palaeolimnologic, -environmental, and -climatic conditions is presented for the Middle Miocene long-term freshwater lake (14.3 to 13.5 Ma) of the Steinheim basin, on the basis of a combined C, 0, and Sr isotope study of sympatric skeletal fossils of aquatic and terrestrial organisms from the lake sediments. The oxygen isotope composition for lake water of the Steinheim basin (delta O-18(H2O) = +2.0 +/- 0.4 parts per thousand VSMOW, n = 6) was reconstructed from measurements of delta O-18(PO4) of aquatic turtle bones. The drinking water calculated from the enamel of large mammals (proboscideans, rhinocerotids, equids, cervids, suids) has delta O-18(H2O) values (delta(OH2O)-O-18 = -5.9 +/- 1.7 parts per thousand VSMOW, n = 31) typical for Middle Miocene meteoric water of the area. This delta O-18(H2O) value corresponds to a mean annual air temperature (MAT) of 18.8 +/- 3.8 degrees C, calculated using a modem-day delta(OH2O)-O-18-MAT relation. Hence, large mammals did not use the lake water as principal drinking water. In contrast, small mammals, especially the then abundant pika Prolagus oeningensis drank from O-18-enriched water sources (delta O-18(H2O) = +2.7 +/- 2.3 parts per thousand VSMOW, n = 7), such as the lake water. Differences in Sr and 0 isotopic compositions between large and small mammal teeth indicate different home ranges and drinking behaviour and support migration of some large mammals between the Swabian Alb plateau and the nearby Molasse basin, while small mammals ingested their food and water locally. Changes in the lake level, water chemistry, and temperature were inferred using isotopic compositions of ostracod and gastropod shells from a composite lake sediment profile. Calcitic ostracod valves (Ilyocypris binocularis; delta O-18 = +1.7 +/- 1.2 parts per thousand VPDB, delta C-18 = -0.5 +/- 0.9 parts per thousand, VPDB, n = 68) and aragonitic, gastropod shells (Gyraulus spp.; delta O-18 = +2.0 +/- 13 parts per thousand VPDB, delta C-13 = -1.1 +/- 1.3 parts per thousand VPDB, n = 89) have delta O-18 and delta C-13 values similar to or even higher than those of marine, carbonates. delta C-13 values:of the biogenic carbonates parallel lake level fluctuations while delta O-18 values scatter around +2 +/- 2 parts per thousand and reflect the short term variability of meteoric water inflow vs. longer term evaporation. Sr-87/Sr-86 ratios of aragonitic Gyraulus spp. gastropod shells parallel the lake level fluctuations, reflecting variable inputs of groundwater and surface waters. Using a water delta O-18(H2O) value of +2.0 parts per thousand VSMOW, water temperatures calculated from skeletal tissue delta O-18 values of ostracods are 16.7 +/- 5.0 degrees C, gastropods 20.6 +/- 5.6 degrees C, otoliths 21.8 +/- 1.4 degrees C, and fish teeth 17.0 +/- 2.7 degrees C. The calculated MAT (similar to 19 degrees C), lake water temperatures (similar to 17 to 22 degrees C) and the O-18-enriched water compositions are indicative of warm-temperate climatic conditions, possibly with a high humidity during this period. Vegetation in the area surrounding the basin was largely of the C-3-type, as indicated by carbon isotopic compositions of tooth enamel from large mammals (delta C-13 = -11.1 +/- 1.1 parts per thousand VPDB, n = 40). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Phylogenetic reconstructions of transmission events from individuals with acute human immunodeficiency virus (HIV) infection are conducted to illustrate this group's heightened infectivity. Varied definitions of acute infection and assumptions about observed phylogenetic clusters may produce misleading results. We conducted a phylogenetic analysis of HIV pol sequences from 165 European patients with estimated infection dates and calculated the difference between dates within clusters. Nine phylogenetic clusters were observed. Comparison of dates within clusters revealed that only 2 could have been generated during acute infection. Previous analyses may have incorrectly assigned transmission events to the acutely HIV infected when they were more likely to have occurred during chronic infection.
Resumo:
Twenty-eight Klebsiella pneumoniae clinical isolates that exhibited an extended-spectrum cephalosporin-resistance profile from a city in the Northeast of Brazil were analysed by PCR and DNA sequencing in order to determine the occurrence of blaCTX-M genes and class 1 integrons. We determined the occurrence of the blaCTX-M-2 gene in six K. pneumoniae isolates and describe the first detection of the blaCTX-M-28 gene in South America. Seven isolates carried class 1 integrons. Partial sequencing analysis of the 5'-3'CS variable region in the class 1 integrons of three isolates revealed the presence of aadA1, blaOXA-2 and dfr22 gene cassettes.
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
Omnidirectional cameras offer a much wider field of view than the perspective ones and alleviate the problems due to occlusions. However, both types of cameras suffer from the lack of depth perception. A practical method for obtaining depth in computer vision is to project a known structured light pattern on the scene avoiding the problems and costs involved by stereo vision. This paper is focused on the idea of combining omnidirectional vision and structured light with the aim to provide 3D information about the scene. The resulting sensor is formed by a single catadioptric camera and an omnidirectional light projector. It is also discussed how this sensor can be used in robot navigation applications
Resumo:
The aim of this paper is to construct a "super" version of a tensor triangulated category, and to show that super-schemes can be reconstructed from its category of perfect complexes in a way similar to Balmer [Bal05] provided we consider this extra structure.
Resumo:
We report here the first complete mitochondria genome of Onchocerca volvulus from a focus outside of Africa. An O. volvulus mitogenome from the Brazilian Amazonia focus was obtained using a combination of high-throughput and Sanger sequencing technologies. Comparisons made between this mitochondrial genome and publicly available mitochondrial sequences identified 46 variant nucleotide positions and suggested that our Brazilian mitogenome is more closely related to Cameroon-origin mitochondria than West African-origin mitochondria. As well as providing insights into the origins of Latin American onchocerciasis, the Brazilian Amazonia focus mitogenome may also have value as an epidemiological resource.
Resumo:
Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available.