993 resultados para equatorial climate
Resumo:
Forest-management goals in the context of climate change are to reduce the adverse impact of climate change on biodiversity, ecosystem services and carbon stocks. For developing an effective adaptation strategy, knowledge on nature and sources of vulnerability of forests is necessary to conserve or enhance carbon sinks. However, assessing the vulnerability of forest ecosystems is a challenging task, as the mechanisms that determine vulnerability cannot be observed directly. In this article, we list the challenges in forest vulnerability assessments and propose an assessment of inherent vulnerability by using process-based indicators under the current climate. We also suggest periodic assessment of vulnerability, which is necessary to review adaptation strategies for the management of forests and forest carbon stocks.
Resumo:
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U-2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U-2. Consequently, the reference evapotranspiration, modeled by the Penman-Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U-2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Nio Southern Oscillation-ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.
Resumo:
We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which occurred in Bay of Bengal during May 2009.
Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas
Resumo:
The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance such as the pollution of the snow cover through black carbon or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even-more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We present a comparison of the Global Ocean Data Assimilation System (GODAS) five-day ocean analyses against in situ daily data from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at locations 90 degrees E, 12 degrees N; 90 degrees E, 8 degrees N; 90 degrees E, 0 degrees N and 90 degrees E, 1.5 degrees S in the equatorial Indian Ocean and the Bay of Bengal during 2002-2008. We find that the GODAS temperature analysis does not adequately capture a prominent signal of Indian Ocean dipole mode of 2006 seen in the mooring data, particularly at 90 degrees E 0 degrees N and 90 degrees E 1.5 degrees S in the eastern India Ocean. The analysis, using simple statistics such as bias and root-mean-square deviation, indicates that standard GODAS temperature has definite biases and significant differences with observations on both subseasonal and seasonal scales. Subsurface salinity has serious deficiencies as well, but this may not be surprising considering the poorly constrained fresh water forcing, and possible model deficiencies in subsurface vertical mixing. GODAS reanalysis needs improvement to make it more useful for study of climate variability and for creating ocean initial conditions for prediction.
Resumo:
The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6 +/- 1 Gta(-1), which decreases about sixfold to -35 +/- 2 Gta(-1) by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12 +/- 2 Gta(-1) by the 2080s. We also find that 10.6 and 27 % of the glaciers could face `eventual disappearance' by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.
Resumo:
A variety of methods are available to estimate future solar radiation (SR) scenarios at spatial scales that are appropriate for local climate change impact assessment. However, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. Three methodologies to guide the estimation of SR are discussed in this study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not measured. In Case 1, future SR scenarios are derived using several downscaling methodologies that transfer the simulated large-scale information of global climate models to a local scale ( measurements). In Case 2, the SR was first estimated at the local scale for a longer time period using sparse measured records, and then future scenarios were derived using several downscaling methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period using complete or sparse measured records of SR from which SR at the local scale was estimated. Finally, the future scenarios were derived using several downscaling methodologies. The lack of observed SR data, especially in developing countries, has hindered various climate change impact studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid Malaprabha reservoir catchment in southern India. A support vector machine was used in downscaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2, B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W m(-2) yr(-1) in SR during the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves method. The decreasing trends for the future were in agreement with the simulations of SR from the CGCM3 model directly obtained for the 4 scenarios.
Resumo:
The capacity of species to track shifting climates into the future will strongly influence outcomes for biodiversity under a rapidly changing climate. However, we know remarkably little about the dispersal abilities of most species and how these may be influenced by climate change. Here we show that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics. Our model projections show reductions in both median and long-distance seed dispersal, which may markedly reduce the capacity of many rainforest plant species to track shifts in suitable habitat under climate change. However, our analyses suggest that active management to maintain the abundances of a small set of important frugivores under climate change could markedly reduce the projected loss of seed dispersal services and facilitate shifting distributions of rainforest plant species.
Resumo:
In this study, the Tropical Rainfall Measurement Mission based Microwave Imager estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the ocean surrounding it, during the premonsoon (May) and monsoon (June-September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). Comparison across three ocean regions suggests that the cloud liquid water (CLW) over the orographically influenced Arabian Sea (close to the Indian west coast) behaves differently from the CLW over a trapped ocean (Bay of Bengal) or an open ocean (equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing CLW profiles between monsoon and premonsoon periods, as well as between early and peak phases of the monsoon. We find that the CLW during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds. As active and break phases are important signatures of the monsoon progression, we also analysed the differences in CLW during various phases of the monsoon, namely, active, break, active-to-break and break-to-active transition phases. We find that the cloud liquid water content during the break-to-active transition phase is significantly higher than during the active-to-break transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-CLW/rain association by comparing the central Indian CLW with that over southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in CLW during the different phases of the monsoon. While our hypothesis needs to be further investigated with numerical models, the results presented in this study can potentially serve as a good benchmark in evaluating the performance of cloud resolving models over the Indian region.
Resumo:
Eleven GCMs (BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1) were evaluated for India (covering 73 grid points of 2.5 degrees x 2.5 degrees) for the climate variable `precipitation rate' using 5 performance indicators. Performance indicators used were the correlation coefficient, normalised root mean square error, absolute normalised mean bias error, average absolute relative error and skill score. We used a nested bias correction methodology to remove the systematic biases in GCM simulations. The Entropy method was employed to obtain weights of these 5 indicators. Ranks of the 11 GCMs were obtained through a multicriterion decision-making outranking method, PROMETHEE-2 (Preference Ranking Organisation Method of Enrichment Evaluation). An equal weight scenario (assigning 0.2 weight for each indicator) was also used to rank the GCMs. An effort was also made to rank GCMs for 4 river basins (Godavari, Krishna, Mahanadi and Cauvery) in peninsular India. The upper Malaprabha catchment in Karnataka, India, was chosen to demonstrate the Entropy and PROMETHEE-2 methods. The Spearman rank correlation coefficient was employed to assess the association between the ranking patterns. Our results suggest that the ensemble of GFDL2.0, MIROC3, BCCR-BCCM2.0, UKMO-HADCM3, MPIECHAM4 and UKMO-HADGEM1 is suitable for India. The methodology proposed can be extended to rank GCMs for any selected region.
Resumo:
Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.
Resumo:
Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.
Resumo:
Motivated by observations of the mean state of tropical precipitable water (PW), a moist, first baroclinic mode, shallow-water system on an equatorial beta-plane with a background saturation profile that depends on latitude and longitude is studied. In the presence of a latitudinal moisture gradient, linear analysis of the non-rotating problem reveals large-scale, symmetric, eastward and westward propagating unstable modes. The introduction of a zonal moisture gradient breaks the east-west symmetry of the unstable modes. The effects of rotation are then included by numerically solving the resulting eigenvalue problem on an equatorial beta-plane. With a purely meridional moisture gradient, the system supports large-scale, low-frequency, eastward and westward moving neutral modes. Some of the similarities, and some of the discrepancies of these modes with intraseasonal tropical waves are pointed out. Finally, a zonal moisture gradient in the presence of rotation renders some of the aforementioned neutral modes unstable. In particular, according to observations of large-scale, low-frequency tropical variability, it is seen that regions where the background saturation profile increases (decreases) to the east favour eastward (westward) moving moist modes.
Resumo:
Developments in the statistical extreme value theory, which allow non-stationary modeling of changes in the frequency and severity of extremes, are explored to analyze changes in return levels of droughts for the Colorado River. The transient future return levels (conditional quantiles) derived from regional drought projections using appropriate extreme value models, are compared with those from observed naturalized streamflows. The time of detection is computed as the time at which significant differences exist between the observed and future extreme drought levels, accounting for the uncertainties in their estimates. Projections from multiple climate model-scenario combinations are considered; no uniform pattern of changes in drought quantiles is observed across all the projections. While some projections indicate shifting to another stationary regime, for many projections which are found to be non-stationary, detection of change in tail quantiles of droughts occurs within the 21st century with no unanimity in the time of detection. Earlier detection is observed in droughts levels of higher probability of exceedance. (C) 2014 Elsevier Ltd. All rights reserved.