950 resultados para energy consumption


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Food production account for significant share of global environmental impacts. Impacts are global warming, fresh water use, land use and some non-renewable substance consumption like phosphorous fertilizers. Because of non-sustainable food production, the world is heading to different crises. Both food- and freshwater crises and also land area and phosphorous fertilizer shortages are one of many challenges to overcome in near future. The major protein sources production amounts, their impacts on environment and uses are show in this thesis. In this thesis, a more sustainable than conventional way of biomass production for food use is introduced. These alternative production methods are photobioreactor process and syngas-based bioreactor process. The processes’ energy consumption and major inputs are viewed. Their environmental impacts are estimated. These estimations are the compared to conventional protein production’s impacts. The outcome of the research is that, the alternative methods can be more sustainable solutions for food production than conventional production. However, more research is needed to verify the exact impacts. Photobioreactor is more sustainable process than syngas-based bioreactor process, but it is more location depended and uses more land area than syngas-based process. In addition, the technology behind syngas-based application is still developing and it can be more efficient in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The energy consumption by ICT (Information and Communication Technology) equipment is rapidly increasing which causes a significant economic and environmental problem. At present, the network infrastructure is becoming a large portion of the energy footprint in ICT. Thus the concept of energy efficient or green networking has been introduced. Now one of the main concerns of network industry is to minimize energy consumption of network infrastructure because of the potential economic benefits, ethical responsibility, and its environmental impact. In this paper, the energy management strategies to reduce the energy consumed by network switches in LAN (Local Area Network) have been developed. According to the lifecycle assessment of network switches, during usage phase, the highest amount of energy consumed. The study considers bandwidth, link load and traffic matrixes as input parameters which have the highest contribution in energy footprint of network switches during usage phase and energy consumption as output. Then with the objective of reducing energy usage of network infrastructure, the feasibility of putting Ethernet switches hibernate or sleep mode was investigated. After that, the network topology was reorganized using clustering method based on the spectral approach for putting network switches to hibernate or switched off mode considering the time and communications among them. Experimental results show the interest of this approach in terms of energy consumption

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Part 7: Cyber-Physical Systems

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Your energy connection is a South Carolina Energy Office publication on topics related to energy conservation and renewable energy in the state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Your energy connection is a South Carolina Energy Office publication on topics related to energy conservation and renewable energy in the state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Your energy connection is a South Carolina Energy Office publication on topics related to energy conservation and renewable energy in the state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The European program HORIZON2020 aims to have 20% of electricity produced by renewable sources. The building sector represents 40% of the European Union energy consumption. Reducing energy consumption in buildings is therefore a priority for energy efficiency. The present investigation explores the most adequate roof shapes compatible with the placement of different types of small wind energy generators on high-rise buildings for urban wind energy exploitation. The wind flow around traditional state-of-the-art roof shapes is considered. In addition, the influence of the roof edge on the wind flow on high-rise buildings is analyzed. These geometries are investigated, both qualitatively and quantitatively, and the turbulence intensity threshold for horizontal axis wind turbines is considered. The most adequate shapes for wind energy exploitation are identified, studying vertical profiles of velocity, turbulent kinetic energy and turbulence intensity. Curved shapes are the most interesting building roof shapes from the wind energy exploitation point of view, leading to the highest speed-up and the lowest turbulence intensity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Life expectancy is increasing and becoming a characteristic phenomenon of developed countries and, increasingly, of developing countries, such as Brazil. The aging process causes changes of some physiological functions such as loss of smell, taste, loss of appetite, among other things that end up changing the food intake of these individuals. Objectives: This study aimed to assess food consumption of the young and long-lived elderly in a city in southern Brazil. Methods: A cross-sectional survey conducted through home visits in Palmeira das Missões - RS, Brazil. The sociodemographic, anthropometrical and dietary data were collected through questionnaires and 24-hour recall. The adequacy of nutrients was assessed according to the Dietary Reference Intakes. Data were analyzed using SPSS 18.0 software. Results: The study included 424 older adults, 84,4% (n = 358) aged less than 80 years old and 15,6% (n = 66) older than 80. The intake of energy and protein was insufficient for both young elderly and the oldest. The consumption of vitamins and minerals has been insufficient in all seniors except for iron, which presented an excessive intake. There was a statistically significant difference between the elderly and oldest only for the consumption of lipids and vitamin B12. Conclusion: The majority of studies with elderly corroborate the results found in this article. An inadequate intake of nutrients can develop nutritional deficiencies, and consequently it can result in physiological and pathological changes which would compromise the functional capacity of the elderly. Energy consumption was insufficient and macronutrients were inadequate, both for the young elderly as for the oldest. Additionally, the consumption of vitamins and minerals was insufficient to everyone except the iron, which presented excessive intake for young and oldest elderly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hardware vendors make an important effort creating low-power CPUs that keep battery duration and durability above acceptable levels. In order to achieve this goal and provide good performance-energy for a wide variety of applications, ARM designed the big.LITTLE architecture. This heterogeneous multi-core architecture features two different types of cores: big cores oriented to performance and little cores, slower and aimed to save energy consumption. As all the cores have access to the same memory, multi-threaded applications must resort to some mutual exclusion mechanism to coordinate the access to shared data by the concurrent threads. Transactional Memory (TM) represents an optimistic approach for shared-memory synchronization. To take full advantage of the features offered by software TM, but also benefit from the characteristics of the heterogeneous big.LITTLE architectures, our focus is to propose TM solutions that take into account the power/performance requirements of the application and what it is offered by the architecture. In order to understand the current state-of-the-art and obtain useful information for future power-aware software TM solutions, we have performed an analysis of a popular TM library running on top of an ARM big.LITTLE processor. Experiments show, in general, better scalability for the LITTLE cores for most of the applications except for one, which requires the computing performance that the big cores offer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Data aggregation in wireless sensor networks is employed to reduce the communication overhead and prolong the network lifetime. However, an adversary may compromise some sensor nodes, and use them to forge false values as the aggregation result. Previous secure data aggregation schemes have tackled this problem from different angles. The goal of those algorithms is to ensure that the Base Station (BS) does not accept any forged aggregation results. But none of them have tried to detect the nodes that inject into the network bogus aggregation results. Moreover, most of them usually have a communication overhead that is (at best) logarithmic per node. In this paper, we propose a secure and energy-efficient data aggregation scheme that can detect the malicious nodes with a constant per node communication overhead. In our solution, all aggregation results are signed with the private keys of the aggregators so that they cannot be altered by others. Nodes on each link additionally use their pairwise shared key for secure communications. Each node receives the aggregation results from its parent (sent by the parent of its parent) and its siblings (via its parent node), and verifies the aggregation result of the parent node. Theoretical analysis on energy consumption and communication overhead accords with our comparison based simulation study over random data aggregation trees.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: In the literature, there is no consistent classification of healthcare facilities. In order to benchmark, assess, and compare the environmental performance of these buildings, it is important to clearly identify the typology within the scope of a particular research. This article identifies the different typologies within the healthcare sector, particularly in Australia, with the aim of the development of energy performance benchmarks for day surgery/procedure centers. BACKGROUND: Healthcare buildings encompass a wide range of facilities. They all share the same purpose of healing and offering a health service for patients. However, they vary significantly in terms of patient type and service provided. These buildings consume a considerable amount of energy, and as a result of the different designs and sizes, their pattern of energy consumption varies. METHODS: The research used a systematic review of the literature to determine how the term "healthcare facility" has been employed in different contexts. In order to better understand the differences in healthcare facilities, definitions and the origin of hospitals and healthcare facilities are introduced and a framework for the classification of healthcare facilities and hospitals is proposed. RESULTS: Healthcare facilities are classified into the following six categories: patient type, care provided, management and ownership, level of care, facility size, and location. Based on these classifications, a categorization for the studies of energy performance in healthcare is introduced. CONCLUSIONS: This study provides a basis for assessment and comparison for a particular healthcare building typology that will assist researchers working in the field of design and energy assessment of healthcare facilities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquatic centres are popular recreational facilities in Australia and other developed countries. These buildings have experienced exponential demand over the past few decades. The growing desire for better indoor environmental quality in aquatic centres has resulted in a marked increase in energy consumption in this sector. Community expectations in relation to aquatic centres are rising and these spaces are associated with wellness and health. Energy consumption in indoor swimming pool buildings is high due to the high indoor air temperatures, increased ventilation heat losses and the need to disinfect water. This study investigates the energy consumption and indoor environmental quality of seven aquatic centres in Australia. The construction and various energy consuming systems of the facilities are analysed and compared against the energy consumption. Thermal comfort data is collected through measuring the indoor environmental parameters. Building envelopes were found to be leaky in most of the buildings resulting in energy wastage. The main indicators for energy consumption were gross floor area, area of pool surface, and number of visitors. It was found that the set point temperatures were significantly high in some of the buildings resulting in high level of discomfort for the spectators and staff.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The number of tall buildings is increasing as a result of the advances in construction technologies and the rising land prices. These buildings are characterised by their high energy consumption compared to other building types as they rely intensively on mechanical HVAC systems due to the extreme weather conditions associated with the increase in height. However, they present a great opportunity for energy savings. In recent years, it has been noticed the increasing interest in geometry and form of tall buildings, as a result of the evolution of parametric modelling and 3D visualisation tools, on the expense of the environmental aspect. This paper discusses factors affecting the energy consumption in the tall buildings. Through an extensive analysis of Literature, active and passive energy efficient strategies adopted in tall building at various building stages are identified. In addition, the role of architectural design parameters, such as building form, orientation and envelope on the tall building energy performance are highlighted. Finally, a set of guidelines and environmental design strategies to be considered in different phases in order to achieve energy-efficient tall buildings are proposed. These strategies have been categorised into four stages namely early design, conceptualisation, and documentation and operational. A 3D modelling approach was used to visualise and illustrate the proposed strategies in different stages.