995 resultados para elastic scattering
Resumo:
Ferromagnetic resonance (FMR) measurements are employed to evaluate the presence of the two magnon scattering contribution in the magnetic relaxation processes of the epitaxial nickel zinc ferrite thin films deposited using pulsed laser deposition (PLD) on the (0 0 1) MgAl2O4 substrate. Furthermore, the reciprocal space mapping reveals the presence of microstructural defects which acts as an origin for the two magnon scattering process in this thin film. The relevance of this scattering process is further discussed for understanding the higher FMR linewidth in the in-plane configuration compared to the out-of-plane configuration. FMR measurements also reveal the presence of competing uniaxial and cubic anisotropy in the studied films.
Resumo:
In this paper we show the effect of electron-phonon scattering on the performance of monolayer (1L) MoS2 and WSe2 channel based n-MOSFETs. Electronic properties of the channel materials are evaluated using the local density approximation (LDA) in density functional theory (DFT). For phonon dispersion we employ the small displacement / frozen phonon calculations in DFT. Thereafter using the non-equilibrium Green's function (NEGF) formalism, we study the effect of electron-phonon scattering and the contribution of various phonon modes on the performance of such devices. It is found that the performance of the WSe2 device is less impacted by phonon scattering, showing a ballisticity of 83% for 1L-WSe2 FET for channel length of 10 nm. Though 1L-MoS2 FET of similar dimension shows a lesser ballisticity of 75%. Also in the presence of scattering there exist a a 21-36% increase in the intrinsic delay time (tau) and a 10-18% reduction in peak transconductance (g(m)) for WSe2 and MoS2 devices respectively. (C) 2015 Author(s).
Resumo:
In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 degrees C and post-curing at 120 degrees C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.
Resumo:
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies. (c) 2015 AIP Publishing LLC.
Resumo:
Controlling optical and electronic properties of graphene via substitutional doping is central to many fascinating applications. Doping graphene with boron (B) or nitrogen (N) has led to p- or n-type graphene; however, the electron mobility in doped-graphene is severely compromised due to increased electron-defect scattering. Here, we demonstrate through Raman spectroscopy, nonlinear optical and ultrafast spectroscopy, and density functional theory that the graphitic dopant configuration is stable in graphene and does not significantly alter electron-electron or electron-phonon scattering, that is otherwise present in doped graphene, by preserving the crystal coherence length (L-a).
Resumo:
We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.
Resumo:
Naturally formed CdTe/CdS core/shell quantum dot (QD) structures in the presence of surface stabilizing agents have been synthesized by a hydrothermal method. Size and temperature dependent photoluminescence (PL) spectra have been investigated to understand the exciton-phonon interaction, and radiative and nonradiative relaxation of carriers in these QDs. The PL of these aqueous CdTe QDs (3.0-4.8 nm) has been studied in the temperature range 15-300 K. The strength of the exciton-LO-phonon coupling, as reflected in the Huang-Rhys parameter `S' is found to increase from 1.13 to 1.51 with the QD size varying from 4.8 to 3.0 nm. The PL linewidth (FWHM) increases with increase in temperature and is found to have a maximum in the case of QDs of 3.0 nm in size, where the exciton-acoustic phonon coupling coefficient is enhanced to 51 mu eV K-1, compared to the bulk value of 0.72 mu eV K-1. To understand the nonradiative processes, which affect the relaxation of carriers, the integrated PL intensity is observed as a function of temperature. The integrated PL intensity remains constant until 50 K for relatively large QDs (3.9-4.8 nm) beyond which a thermally activated process takes over. Below 150 K, a small activation energy, 45-19 meV, is found to be responsible for the quenching of the PL. Above 150 K, the thermal escape from the dot assisted by scattering with multiple longitudinal optical (LO) phonons is the main mechanism for the fast quenching of the PL. Besides this high temperature quenching, interestingly for relatively smaller size QDs (3.4-3.0 nm), the PL intensity enhances as the temperature increases up to 90-130 K, which is attributed to the emission of carriers from interface/trap states having an activation energy in the range of 6-13 meV.
Resumo:
We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT similar to 0.8 keV) blackbody and a power law with high energy cutoff (E-cut similar to 5.4 keV) without the need for a broad Gaussian at similar to 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at similar to 11 and similar to 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (similar to 11 and similar to 15 keV) as a single CRSF.
Resumo:
Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms.
Resumo:
New molecular beam scattering experiments have been performed to measure the total ( elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as `hydrogen bonded'.
Resumo:
Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.
Resumo:
A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one geometric dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states yield the necessary force and deformation vectors governing the motion of the shell. By incorporating a shear correction factor, the formulation also accommodates analysis of shells that have higher thickness. In order to attain this, a consistent second order approximation to the complementary energy density is considered and incorporated in peridynamics via constitutive correspondence. Unlike the uncoupled constitution for thin shells, a consequence of a first order approximation, constitutive relations for thick shells are fully coupled in that surface wryness influences the in-plane stress resultants and surface strain the moments. Our proposal on the peridynamic shell theory is numerically assessed against simulations on static deformation of spherical and cylindrical shells, that of flat plates and quasi-static fracture propagation in a cylindrical shell. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.