977 resultados para document électronique
Resumo:
OBJECTIVES The aim of the current Valve Academic Research Consortium (VARC)-2 initiative was to revisit the selection and definitions of transcatheter aortic valve implantation (TAVI) clinical endpoints to make them more suitable to the present and future needs of clinical trials. In addition, this document is intended to expand the understanding of patient risk stratification and case selection. BACKGROUND A recent study confirmed that VARC definitions have already been incorporated into clinical and research practice and represent a new standard for consistency in reporting clinical outcomes of patients with symptomatic severe aortic stenosis (AS) undergoing TAVI. However, as the clinical experience with this technology has matured and expanded, certain definitions have become unsuitable or ambiguous. METHODS AND RESULTS Two in-person meetings (held in September 2011 in Washington, DC, and in February 2012 in Rotterdam, The Netherlands) involving VARC study group members, independent experts (including surgeons, interventional and noninterventional cardiologists, imaging specialists, neurologists, geriatric specialists, and clinical trialists), the US Food and Drug Administration (FDA), and industry representatives, provided much of the substantive discussion from which this VARC-2 consensus manuscript was derived. This document provides an overview of risk assessment and patient stratification that need to be considered for accurate patient inclusion in studies. Working groups were assigned to define the following clinical endpoints: mortality, stroke, myocardial infarction, bleeding complications, acute kidney injury, vascular complications, conduction disturbances and arrhythmias, and a miscellaneous category including relevant complications not previously categorized. Furthermore, comprehensive echocardiographic recommendations are provided for the evaluation of prosthetic valve (dys)function. Definitions for the quality of life assessments are also reported. These endpoints formed the basis for several recommended composite endpoints. CONCLUSIONS This VARC-2 document has provided further standardization of endpoint definitions for studies evaluating the use of TAVI, which will lead to improved comparability and interpretability of the study results, supplying an increasingly growing body of evidence with respect to TAVI and/or surgical aortic valve replacement. This initiative and document can furthermore be used as a model during current endeavors of applying definitions to other transcatheter valve therapies (for example, mitral valve repair).
Resumo:
Venous malformations (VMs) are the most common vascular developmental anomalies (birth defects) . These defects are caused by developmental arrest of the venous system during various stages of embryogenesis. VMs remain a difficult diagnostic and therapeutic challenge due to the wide range of clinical presentations, unpredictable clinical course, erratic response to the treatment with high recurrence/persistence rates, high morbidity following non-specific conventional treatment, and confusing terminology. The Consensus Panel reviewed the recent scientific literature up to the year 2013 to update a previous IUP Consensus (2009) on the same subject. ISSVA Classification with special merits for the differentiation between the congenital vascular malformation (CVM) and vascular tumors was reinforced with an additional review on syndrome-based classification. A "modified" Hamburg classification was adopted to emphasize the importance of extratruncular vs. truncular sub-types of VMs. This incorporated the embryological origin, morphological differences, unique characteristics, prognosis and recurrence rates of VMs based on this embryological classification. The definition and classification of VMs were strengthened with the addition of angiographic data that determines the hemodynamic characteristics, the anatomical pattern of draining veins and hence the risk of complication following sclerotherapy. The hemolymphatic malformations, a combined condition incorporating LMs and other CVMs, were illustrated as a separate topic to differentiate from isolated VMs and to rectify the existing confusion with name-based eponyms such as Klippel-Trenaunay syndrome. Contemporary concepts on VMs were updated with new data including genetic findings linked to the etiology of CVMs and chronic cerebrospinal venous insufficiency. Besides, newly established information on coagulopathy including the role of D-Dimer was thoroughly reviewed to provide guidelines on investigations and anticoagulation therapy in the management of VMs. Congenital vascular bone syndrome resulting in angio-osteo-hyper/hypotrophy and (lateral) marginal vein was separately reviewed. Background data on arterio-venous malformations was included to differentiate this anomaly from syndrome-based VMs. For the treatment, a new section on laser therapy and also a practical guideline for follow up assessment were added to strengthen the management principle of the multidisciplinary approach. All other therapeutic modalities were thoroughly updated to accommodate a changing concept through the years.
Resumo:
The diagnostic approach to vascular anomalies should include the distinction between vascular tumors (i.e. hemangiomas) and congential vascular malformations (CVMs). This step is based more on history and clinical examination rather than on instrumental evaluation. In children Duplex ultrasound and histology can be helpful to separate hypervasularized tumors from CVMs. Appropriate record of objective measures as size or flow volume is required in order to evaluate the progress of the pathology and/or to assess the results of adopted therapeutic interventions. The anatomic, pathological and hemodynamic characteristics, the secondary effects on the surrounding tissues and the systemic manifestations should be defined. Basic diagnostic tools are Duplex sonography followed by MRI or CT scanning. The definition of the vascular anomaly should be according to the Hamburg classification and should separate vascular tumors from vacular malformations followed by separation of high flow from low flow CVMs. Diagnostic investigations are best undertaken at centers where subsequent therapeutic interventions will be performed.
Resumo:
Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundation
Resumo:
The Joint Commission of the Swiss Medical Schools (SMIFK/CIMS) decided in 2000 to establish a Swiss Catalogue of Learning Objectives (SCLO) for undergraduate medical training, which was adapted from a similar Dutch blueprint. A second version of the SCLO was developed and launched in 2008. The catalogue is a prerequisite for the accreditation of the curricula of the six Swiss medical faculties and defines the contents of the Federal Licensing Examination (FLE). Given the evolution of the field of medicine and of medical education, the SMIFK/CIMS has decided to embark on a total revision of the SCLO. This article presents the proposed structure and content of Profiles, a new document which, in the future, will direct the format of undergraduate studies and of the FLE. Profiles stands for the Principal Relevant Objectives for Integrative Learning and Education in Switzerland. It is currently being developed by a group of experts from the six Swiss faculties as well as representatives of other institutions involved in these developments. The foundations of Profiles are grounded in the evolution of medical practice and of public health and are based on up-to-date teaching concepts, such as EPAs (entrustable professional activities). An introduction will cover the concepts and a tutorial will be displayed. Three main chapters will provide a description of the seven 2015 CanMEDS roles, a list of core EPAs and a series of ≈250 situations embracing the most frequent and current conditions affecting health. As Profiles is still a work in progress, it is hoped that this paper will attract the interest of all individuals involved in the training of medical students.