859 resultados para dimensional compactification
Resumo:
We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.
Resumo:
Calculations are reported of the magnetic anisotropy energy of two-dimensional (2D) Co nanostructures on a Pt(111) substrate. The perpendicular magnetic anisotropy (PMA) of the 2D Co clusters strongly depends on their size and shape, and rapidly decreases with increasing cluster size. The PMA calculated is in reasonable agreement with experimental results. The sensitivity of the results to the Co-Pt spacing at the interface is also investigated and, in particular, for a complete Co monolayer we note that the value of the spacing at the interface determines whether PMA or in-plane anisotropy occurs. We find that the PMA can be greatly enhanced by the addition of Pt adatoms to the top surface of the 2D Co clusters. A single Pt atom can induce in excess of 5 meV to the anisotropy energy of a cluster. In the absence of the Pt adatoms the PMA of the Co clusters falls below 1 meV/Co atom for clusters of about 10 atoms whereas, with Pt atoms added to the surface of the clusters, a PMA of 1 meV/Co atom can be maintained for clusters as large as about 40 atoms. The effect of placing Os atoms on the top of the Co clusters is also considered. The addition of 5d atoms and clusters on the top of ferromagnetic nanoparticles may provide an approach to tune the magnetic anisotropy and moment separately.
Resumo:
Four experiments consider some of the circumstances under which children follow two different rule pairs when sorting cards. Previous research has repeatedly found that 3-year-olds encounter substantial difficulties implementing the second of two conflicting rule sets, despite their knowledge of these rules. One interpretation of this phenomenon [Cognitive Complexity and Control (CCC) theory] is that 3-year-olds have problems establishing an appropriate hierarchical ordering for rules. The present data suggest an alternative account of children's card sorting behaviour, according to which the cognitive salience of test card features may be more important than inflexibility with respect to rule representation.
Resumo:
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.