714 resultados para deglaciation
Resumo:
Widespread species- and genus-level extinctions of mammals in North America and Europe occurred during the last deglaciation [16,000–9,000 yr B.P. (by 14C)], a period of rapid and often abrupt climatic and vegetational change. These extinctions are variously ascribed to environmental change and overkill by human hunters. By contrast, plant extinctions since the Middle Pleistocene are undocumented, suggesting that plant species have been able to respond to environmental changes of the past several glacial/interglacial cycles by migration. We provide evidence from morphological studies of fossil cones and anatomical studies of fossil needles that a now-extinct species of spruce (Picea critchfieldii sp. nov.) was widespread in eastern North America during the Last Glacial Maximum. P. critchfieldii was dominant in vegetation of the Lower Mississippi Valley, and extended at least as far east as western Georgia. P. critchfieldii disappeared during the last deglaciation, and its extinction is not directly attributable to human activities. Similarly widespread plant species may be at risk of extinction in the face of future climate change.
Resumo:
A cessation of the Atlantic meridional overturning circulation (AMOC) significantly reduces northward oceanic heat transport. In response to anomalous freshwater flux, this leads to the classic 'bipolar see-saw' pattern of northern cooling and southern warming in surface air and ocean temperatures. By contrast, as shown here in a coupled climate model, both northern and southern cooling are observed for an AMOC reduction in response to reduced wind stress in the Southern Ocean (SO). For very weak SO wind stress, not only the overturning circulation collapses, but sea ice export from the SO is strongly reduced. Consequently, sea ice extent and albedo increase in this region. The resulting cooling overcompensates the warming by the reduced northward heat transport. The effect depends continuously on changes in wind stress and is reversed for increased winds. It may have consequences for abrupt climate change, the last deglaciation and climate sensitivity to increasing atmospheric CO_2 concentration.
Resumo:
Based on models and proxy data it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (d18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.
Resumo:
The Sulu Sea is located in the 'warm pool' of the western Pacific Ocean, where mean annual temperatures are the highest of anywhere on Earth. Because this large heat source supplies the atmosphere with a significant portion of its water vapour and latent heat, understanding the climate history of the region is important for reconstructing global palaeoclimate and for predicting future climate change. Changes in the oxygen isotope composition of planktonic foraminifera from Sulu Sea sediments have previously been shown to reflect changes in the planetary ice volume at glacial-interglacial and millenial timeseales, and such records have been obtained for the late Pleistocene epoch and the last deglaciation (Linsley and Thunell, 1990, doi:10.1029/PA005i006p01025; Lindley and Dunbar, 1994, doi:10.1029/93PA03216; Kudrass et al., 1991, doi:10.1038/349406a0). Here I present results that extend the millenial time resolution record back to 150,000 years before present. On timescales of around 10,000 years, the Sulu Sea oxygen-isotope record matches changes in sea level deduced from coral terraces on the Huon peninsula (Chappell and Shackleton, doi:10.1038/324137a0). This is particularly the case during isotope stage 3 (an interglacial period 23,000 to 58,000 years ago) where the Sulu Sea oxygen-isotope record deviates from the SPECMAP deep-ocean oxygen-isotope record (Imbrie et al., 1984). Thus these results support the idea (Chappell and Shackleton, doi:10.1038/324137a0; Shackleton, 1987, doi:10.1016/0277-3791(87)90003-5) that there were higher sea levels and less continental ice during stage 3 than the SPECMAP record implies and that sea level during this interglacial was just 40-50 metres below present levels. The subsequent rate of increase in continental ice volume during the return to full glacial conditions was correspondingly faster than previously thought.
Resumo:
The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre-Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species-rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea-level curves for the region.
Resumo:
The compilation of results obtained on three giant piston cores from the Whittard, Shamrock and Guilcher turbidite levees reveals a high-resolution stratigraphic record for the Bay of Biscay. Due to the abundance of reworked sediments in these sedimentary environments, a specific methodological approach, based on an X-ray-assisted subsampling phase associated with sedimentological, geochemical and micropalaeontological analyses, was implemented. With an accurate chronological framework, this multi-proxy investigation provides observations on the 'Fleuve Manche' palaeoriver and the British-Irish Ice Sheet (BIS) histories over the last 20,000 years. The results obtained highlight the direct influence of the decay of the BIS on the Bay of Biscay deep-sea clastic sedimentation during the last European deglacial phase. During this period, the annual BIS cycle of meltwater seems enough to generate seasonal turbidity currents associated with exceptional sedimentation rates in all the Celtic and Armorican turbidite systems. With very high sedimentation rates, the turbidite levees represent the main deep-sea clastic depositional area. Long coring combined with a very careful subsampling method can provide continuous high-resolution palaeoenvironmental signals.
Resumo:
At the end of the Last Glacial Maximum (19,000 to 11,000 years ago), atmospheric carbon dioxide concentrations rose while the Delta14C of atmospheric carbon dioxide declined**1, 2. These changes have been attributed to an injection of carbon dioxide with low radiocarbon activity from an oceanic abyssal reservoir that was isolated from the atmosphere for several thousand years before deglaciation**3. The current understanding points to the Southern Ocean as the main area of exchange between these reservoirs4. Intermediate water formed in the Southern Ocean surrounding Antarctica would have then carried the old carbon dioxide signature to the lower-latitude oceans**5, 6. Here we reconstruct the Delta14C signature of Antarctic Intermediate Water off the coast of Chile for the past 20,000 years, using paired 14C ages of benthic and planktonic foraminifera. In contrast to the above scenario, we find that the delta14C signature of the Antarctic Intermediate Water closely matches the modelled surface ocean Delta14C, precluding the influence of an old carbon source. We suggest that if the abyssal ocean is indeed the source of the radiocarbon-depleted carbon dioxide, an alternative path for the mixing and propagation of its carbon dioxide may be required to explain the observed changes in atmospheric carbon dioxide concentration and radiocarbon activity.
Resumo:
Sediment core GeoB 1023-5 from the eastern South Atlantic was investigated at high temporal resolution for variations of sea-surface temperature (SST) during the past 22 kyr, using the alkenone (UK'37) method. SSTs increased by 3.5°C from about 18°C during the Last Ice Age (21±2 cal kyr BP) to about 21.5°C at 14.5 cal kyr BP. This warming trend associated with the deglaciation phase was followed by a cooling event with lowest SSTs near 20°C, persisting for about 1000 years between 13 and 12 cal kyr BP. The SSTs then continued to increase to about 22.5°C at the Holocene climatic optimum at 7 cal kyr BP, and decreased again during the Late Holocene to a core-top value of 19.8°C that is comparable to modern annual mean SST values. When compared with alkenone SST records from the eastern North Atlantic, our SST record indicates continuous warming throughout the deglaciation phase in the Benguela Current, while its northern counterpart, the Canary Current, experienced prominent cooling during 'Heinrich Event 1' (H1). On the other hand, for the time period corresponding to the 'Younger Dryas' (YD) cooling event, the Benguela SST record exhibits a cold-temperature interval that corresponds to that observed in the eastern North Atlantic SST records. This observation suggests that interhemispheric climate response in Atlantic eastern boundary current systems was different with respect to the two abrupt climate events associated with Termination I. For the H1, the eastern South Atlantic SST record strongly supports the hypothesis that an 'anti-phase' thermal behavior in South Atlantic surface waters was forced by the slowdown of the North Atlantic Deep Water formation during cold spells in the North Atlantic. In contrast, the abrupt cooling in the eastern South Atlantic coincident with the YD period was probably induced by more vigorous global atmospheric circulation, enhancing the upwelling intensity in both eastern boundary current systems. This atmospheric control may have overridden any effect caused by changes in thermohaline circulation on the South Atlantic SSTs during the YD, which leads to the assumption that the thermohaline circulation was already much closer to its interglacial mode during the YD than during the H1.
Resumo:
We measured the concentrations of redox-sensitive trace metals (Mn, V, Mo, U, Cd and Re) in sediments from ODP Leg 169S Hole 1033B in Saanich Inlet, British Columbia, to determine changes in redox conditions associated with the onset of laminated sediments at ~12.5 kyr. The most striking result is a large peak in authigenic Re along with detrital levels of Mo at the glacial terrigenous clay-diatomaceous sediment transition. In contrast, the underlying glacial terrigenous clay, which extends throughout the bottom section of the core, is chemically similar to detrital concentrations, either Cowichan River particulates or average shale values. These data suggest a period of oxic bottom waters but reducing pore-waters. This could be due to the dramatic transformation of Saanich Inlet during the late deglaciation from an open bay to an inlet, which restricted circulation and slowed bottom water oxygen renewal. A peak and gradual increase in authigenic Mn in younger sediments subsequent to the Re peak suggests that increasingly oxic conditions followed the authigenic enrichment in Re. These conditions could be connected to the Younger Dryas cooling period, which was coincident with an increase in well oxygenated upwelled waters on the west coast of North America that form the bottom waters of Saanich Inlet. Metal concentrations in a gray clay bed (~11 kyr) are similar to their concentrations in the glacial terrigenous clay, implying that they have a common source. Authigenic enrichments of Re with little authigenic Mo and Cd suggest that before the deposition of this bed, bottom waters were oxic and pore-water oxygen was consumed in the top centimeter or less. Laminations above the clay layer suggest anoxic conditions, which are also indicated by higher authigenic Mo and Cd and slightly lower Re/Mo ratios in these sediments. The basin remained mostly anoxic after the gray clay was emplaced, as seen by continuous authigenic enrichment of the redox-sensitive trace metals. These results are consistent with increased stratification of the water column, brought about by an influx of fresh water to the basin by a large flood.
Resumo:
Recent observations on postglacial emergence and past glacier extent for one of the least accessible areas in the Arctic, northern Novaya Zemlya are here united. The postglacial marine limit formed 5 to 6 ka is registered on the east and west coasts of the north island at 10 ± 1 and 18 ± 2 m aht, respectively. This modest and late isostatic response along with deglacial ages of >9.2 ka on adjacent marine cores from the northern Barents Sea indicate either early (>13 ka) deglaciation or modest ice sheet loading (<1500 m thick ice sheet) of Novaya Zemlya. Older and higher (up to 50 m aht) raised beaches were identified beneath a discontinuous glacial drift. Shells from the drift and underlying sublittoral sediments yield minimum limiting 14C ages of 26 to 30 ka on an earlier deglacial event(s). The only moraines identified are within 4 km of present glacier margins and reflect at least three neoglacial advances in the past 2.4 ka.