930 resultados para deformed nucleus
Resumo:
Hydrogels are considered promising for disc regeneration strategies. However, it is currently unknown whether the destruction of the natural interface between nucleus and surrounding structures caused by nucleotomy and an inadequate annulus closure diminishes the mechanical competence of the disc. This in vitro study aimed to clarify these mechanisms and to evaluate whether hydrogels are able to restore the biomechanical behaviour of the disc. Nucleus pressure in an ovine intervertebral disc was measured in vivo during day and night and adapted to an in vitro axial compressive diurnal (15min) and night (30min) load. Effects of different defects on disc height and nucleus pressure were subsequently measured in vitro using 30 ovine motion segments. Following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue; and two different hydrogels repaired by suture and glue. The intradiscal pressure in vivo was 0.75MPa during day and 0.5MPa during night corresponding to an in vitro axial compressive force of 130 and 58N, respectively. The compression test showed that neither the implantation of hydrogels nor the re-implantation of the natural nucleus, assumed as being the ideal implant, was able to restore the mechanical functionality of an intact disc. Results indicate the importance of the natural anchorage of the nucleus with its surrounding structures and the relevance of an appropriate annulus closure. Therefore, hydrogels that are able to mimic the mechanical behaviour of the native nucleus may fail in restoring the mechanical behaviour of the disc.
Resumo:
Notochordal cells and nucleus pulposus cells are co-existing in the intervertebral disc at various ratios among different mammalians. This fact rises the question about the interactions and the evolutionary relevance of this phenomenon. It has been described that these relatively large notochordal cells are mainly dominant in early lifetime of all vertebrates and then differences occur with ageing. Human, cattle, sheep, and goat lose the cells with age, whereas rodents and lagomorphs maintain these throughout their lifetime.
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
Honeybees are an essential component of today¿s agricultural system because of their role as pollinators. However, viruses, including a member of the Picornavirales order known commonly as Deformed Wing Virus (DWV), are compromising the health of honeybee colonies. Many picornaviruses, such as poliovirus, have been studied in depth because of their relation to human disease, but also because of their use of an Internal Ribosome Entry Site (IRES) to initiate translation. The primary goal of this thesis was to determine if the 5¿ Non-Translated Region (NTR) of Deformed Wing Virus (DWV) functions as an IRES. A secondary goal was to determine if there are specific parts of that 5¿ NTR that are important to IRES function. Six plasmids were constructed by inserting three different sections of the 5¿ NTR of DWV, in both sense and antisense directions, between two reporter genes. These plasmids, along with several control plasmids, were transfected into Sf9 cells, and post-transfection luciferase assays were conducted. Results were inconclusive. This could have been due to an inability of the plasmids to be expressed in Sf9 cells, an error in the construction of the plasmids, or a mechanical error in the assay procedure. At this time it appears most likely that the 5¿ NTR of DWV may be cell-type or species specific, and the next step would be to transfect the plasmids into a recently developed cultured honeybee cell line.
Resumo:
STUDY DESIGN: The structural integrity of the nucleus pulposus (NP) of intervertebral discs was targeted by enzyme-specific degradations to correlate their effects to the magnetic resonance (MR) signal. OBJECTIVE: To develop quantitative MR imaging as an accurate and noninvasive diagnostic tool to better understand and treat disc degeneration. SUMMARY OF BACKGROUND DATA: Quantitative MR analysis has been previously shown to reflect not only the disc matrix composition, but also the structural integrity of the disc matrix. Further work is required to identify the contribution of the structural integrity versus the matrix composition to the MR signal. METHODS: The bovine coccygeal NPs were injected with either enzyme or buffer, incubated at 37 degrees C as static, unloaded and closed 3-disc segments, and analyzed by a 1.5-Tesla MR scanner to measure MR parameters. RESULTS: Collagenase degradation of the NP significantly decreased the relaxation times, slightly decreased the magnetization transfer ratio, and slightly increased the apparent diffusion coefficient. Targeting the proteoglycan and/or hyaluronan integrity by trypsin and hyaluronidase did not significantly affect the MR parameters, except for an increase in the apparent diffusion coefficient of the disc after trypsin treatment. CONCLUSIONS: Our results demonstrate that changes in the structural integrity of matrix proteins can be assessed by quantitative MR.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.