925 resultados para defects in silicon


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To test the hypothesis that the pericellular fibronectin matrix is involved in mechanotransduction, we compared the response of normal and fibronectin-deficient mouse fibroblasts to cyclic substrate strain. Normal fibroblasts seeded on vitronectin in fibronectin-depleted medium deposited their own fibronectin matrix. In cultures exposed to cyclic strain, RhoA was activated, actin-stress fibers became more prominent, MAL/MKL1 shuttled to the nucleus, and mRNA encoding tenascin-C was induced. By contrast, these RhoA-dependent responses to cyclic strain were suppressed in fibronectin knockdown or knockout fibroblasts grown under identical conditions. On vitronectin substrate, fibronectin-deficient cells lacked fibrillar adhesions containing alpha5 integrin. However, when fibronectin-deficient fibroblasts were plated on exogenous fibronectin, their defects in adhesions and mechanotransduction were restored. Studies with fragments indicated that both the RGD-synergy site and the adjacent heparin-binding region of fibronectin were required for full activity in mechanotransduction, but not its ability to self-assemble. In contrast to RhoA-mediated responses, activation of Erk1/2 and PKB/Akt by cyclic strain was not affected in fibronectin-deficient cells. Our results indicate that pericellular fibronectin secreted by normal fibroblasts is a necessary component of the strain-sensing machinery. Supporting this hypothesis, induction of cellular tenascin-C by cyclic strain was suppressed by addition of exogenous tenascin-C, which interferes with fibronectin-mediated cell spreading.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Naive T cells continuously recirculate between secondary lymphoid tissue via the blood and lymphatic systems, a process that maximizes the chances of an encounter between a T cell and its cognate antigen. This recirculation depends on signals from chemokine receptors, integrins, and the sphingosine-1-phosphate receptor. The authors of previous studies in other cell types have shown that Rac GTPases transduce signals leading to cell migration and adhesion; however, their roles in T cells are unknown. By using both 3-dimensional intravital and in vitro approaches, we show that Rac1- and Rac2-deficient T cells have multiple defects in this recirculation process. Rac-deficient T cells home very inefficiently to lymph nodes and the white pulp of the spleen, show reduced interstitial migration within lymph node parenchyma, and are defective in egress from lymph nodes. These mutant T cells show defective chemokine-induced chemotaxis, chemokinesis, and adhesion to integrin ligands. They have reduced lateral motility on endothelial cells and transmigrate in-efficiently. These multiple defects stem from critical roles for Rac1 and Rac2 in transducing chemokine and sphingosine-1-phosphate receptor 1 signals leading to motility and adhesion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypertension represents a complex, multifactorial disease and contributes to the major causes of morbidity and mortality in industrialized countries: ischemic and hypertensive heart disease, stroke, peripheral atherosclerosis and renal failure. Current pharmacological therapy of essential hypertension focuses on the regulation of vascular resistance by inhibition of hormones such as catecholamines and angiotensin II, blocking them from receptor activation. Interaction of G-protein coupled receptor kinases (GRKs) and regulator of G-protein signaling (RGS) proteins with activated G-protein coupled receptors (GPCRs) effect the phosphorylation state of the receptor leading to desensitization and can profoundly impair signaling. Defects in GPCR regulation via these modulators have severe consequences affecting GPCR-stimulated biological responses in pathological situations such as hypertension, since they fine-tune and balance the major transmitters of vessel constriction versus dilatation, thus representing valuable new targets for anti-hypertensive therapeutic strategies. Elevated levels of GRKs are associated with human hypertensive disease and are relevant modulators of blood pressure in animal models of hypertension. This implies therapeutic perspective in a disease that has a prevalence of 65million in the United States while being directly correlated with occurrence of major adverse cardiac and vascular events. Therefore, therapeutic approaches using the inhibition of GRKs to regulate GPCRs are intriguing novel targets for treatment of hypertension and heart failure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the long time dynamics of a strong glass former, SiO2, below the glass transition temperature by averaging single-particle trajectories over time windows which comprise roughly 100 particle oscillations. The structure on this coarse-grained time scale is very well defined in terms of coordination numbers, allowing us to identify ill-coordinated atoms, which are called defects in the following. The most numerous defects are O-O neighbors, whose lifetimes are comparable to the equilibration time at low temperature. On the other hand, SiO and OSi defects are very rare and short lived. The lifetime of defects is found to be strongly temperature dependent, consistent with activated processes. Single-particle jumps give rise to local structural rearrangements. We show that in SiO2 these structural rearrangements are coupled to the creation or annihilation of defects, giving rise to very strong correlations of jumping atoms and defects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to evaluate the 4-year clinical outcomes following regenerative surgery in intrabony defects with either EMD + BCP or EMD. Twenty-four patients with advanced chronic periodontitis, displaying one-, two-, or three-walled intrabony defect with a probing depth of at least 6 mm, were randomly treated with either EMD + BCP (test) or EMD alone (control). The following clinical parameters were evaluated at baseline, at 1 year and at 4 years after regenerative surgery: plaque index, gingival index, bleeding on probing, probing depth, gingival recession, and clinical attachment level (CAL). The primary outcome variable was CAL. No differences in any of the investigated parameters were observed at baseline between the two groups. The test group demonstrated a mean CAL change from from 10.8 ± 1.6 mm to 7.4 ± 1.6 mm (p < 0.001) and to 7.6 ± 1.7 mm (p < 0.001) at 1 and 4 years, respectively. In the control group, mean CAL changed from 10.4 ± 1.3 at baseline to 6.9 ± 1.0 mm (p < 0.001) at 1 year and 7.2 ± 1.2 mm (p < 0.001) at 4 years. At 4 years, two defects in the test group and three defects in the control group have lost 1 mm of the CAL gained at 1 year. Compared to baseline, at 4 years, a CAL gain of ≥3 mm was measured in 67% of the defects (i.e., in 8 out of 12) in the test group and in 75% of the defects (i.e., in 9 out of 12) in the control group. There were no statistically significant differences in any of the investigated parameters at 1 and at 4 years between the two groups. Within their limits, the present results indicate that: (a) the clinical improvements obtained with both treatments can be maintained over a period of 4 years, and (b) in two- and three-walled intrabony defects, the addition of BCP did not additionally improve the outcomes obtained with EMD alone. In two- and three-walled intrabony defects, the combination of EMD + BCP did not show any advantage over the use of EMD alone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Defects in urothelial integrity resulting in leakage and activation of underlying sensory nerves are potential causative factors of bladder pain syndrome, a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. Herein, we identified the microRNA miR-199a-5p as an important regulator of intercellular junctions. On overexpression in urothelial cells, it impairs correct tight junction formation and leads to increased permeability. miR-199a-5p directly targets mRNAs encoding LIN7C, ARHGAP12, PALS1, RND1, and PVRL1 and attenuates their expression levels to a similar extent. Using laser microdissection, we showed that miR-199a-5p is predominantly expressed in bladder smooth muscle but that it is also detected in mature bladder urothelium and primary urothelial cultures. In the urothelium, its expression can be up-regulated after activation of cAMP signaling pathways. While validating miR-199a-5p targets, we delineated novel functions of LIN7C and ARHGAP12 in urothelial integrity and confirmed the essential role of PALS1 in establishing and maintaining urothelial polarity and junction assembly. The present results point to a possible link between miR-199a-5p expression and the control of urothelial permeability in bladder pain syndrome. Up-regulation of miR-199a-5p and concomitant down-regulation of its multiple targets might be detrimental to the establishment of a tight urothelial barrier, leading to chronic pain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM: To assess functional impairment in terms of visual acuity reduction and visual field defects in inactive ocular toxoplasmosis. METHODS: 61 patients with known ocular toxoplasmosis in a quiescent state were included in this prospective, cross-sectional study. A complete ophthalmic examination, retinal photodocumentation and standard automated perimetry (Octopus perimeter, program G2) were performed. Visual acuity was classified on the basis of the World Health Organization definition of visual impairment and blindness: normal (> or =20/25), mild (20/25 to 20/60), moderate (20/60 to 20/400) and severe (<20/400). Visual field damage was correspondingly graded as mild (mean defect <4 dB), moderate (mean defect 4-12 dB) or severe (mean defect >12 dB). RESULTS: 8 (13%) patients presented with bilateral ocular toxoplasmosis. Thus, a total of 69 eyes was evaluated. Visual field damage was encountered in 65 (94%) eyes, whereas only 28 (41%) eyes had reduced visual acuity, showing perimetric findings to be more sensitive in detecting chorioretinal damage (p<0.001). Correlation with the clinical localisation of chorioretinal scars was better for visual field (in 70% of the instances) than for visual acuity (33%). Moderate to severe functional impairment was registered in 65.2% for visual field, and in 27.5% for visual acuity. CONCLUSION: In its quiescent stage, ocular toxoplasmosis was associated with permanent visual field defects in >94% of the eyes studied. Hence, standard automated perimetry may better reflect the functional damage encountered by ocular toxoplasmosis than visual acuity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The absence or deficiency of specific platelet glycoprotein receptors has a well-defined role in causing several rare bleeding disorders such as Bernard-Soulier syndrome or Glanzmann's thrombasthenia. Several new rare disorders caused by defects in other receptors or their signalling pathways have recently been described. Platelet receptors are also often targets for antibodies in pathological conditions. The roles of platelet receptors or their polymorphism variants in diseases such as cardiovascular disorders have started to be intensively investigated over the last 5 years. Many of these findings still remain controversial. Recent evidence points to a fundamental role for platelets and their receptors in the origins of atherosclerosis. Studies on the role of platelet receptors in diseases such as asthma, diabetes and HIV are still at an early stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, regulate axon guidance and bundling in the developing brain, control cell migration and adhesion, and help patterning the embryo. Here we report that two ephrinB ligands and three EphB receptors are expressed in and regulate the formation of the vascular network. Mice lacking ephrinB2 and a proportion of double mutants deficient in EphB2 and EphB3 receptor signaling die in utero before embryonic day 11.5 (E11.5) because of defects in the remodeling of the embryonic vascular system. Our phenotypic analysis suggests complex interactions and multiple functions of Eph receptors and ephrins in the embryonic vasculature. Interaction between ephrinB2 on arteries and its EphB receptors on veins suggests a role in defining boundaries between arterial and venous domains. Expression of ephrinB1 by arterial and venous endothelial cells and EphB3 by veins and some arteries indicates that endothelial cell-to-cell interactions between ephrins and Eph receptors are not restricted to the border between arteries and veins. Furthermore, expression of ephrinB2 and EphB2 in mesenchyme adjacent to vessels and vascular defects in ephB2/ephB3 double mutants indicate a requirement for ephrin-Eph signaling between endothelial cells and surrounding mesenchymal cells. Finally, ephrinB ligands induce capillary sprouting in vitro with a similar efficiency as angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), demonstrating a stimulatory role of ephrins in the remodeling of the developing vascular system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: This study compared bone regeneration following guided bone regeneration with two bioabsorbable collagen membranes in saddle-type bone defects in dog mandibles. METHODS: Three standardized defects were created, filled with bone chips and deproteinized bovine bone mineral (DBBM), and covered by three different methods: control = no membrane; test 1 = collagen membrane; and test 2 = cross-linked collagen membrane (CCM). Each side of the mandible was allocated to one of two healing periods (8 or 16 weeks). The histomorphometric analysis assessed the percentage of bone, soft tissue, and DBBM in the regenerate; the absolute area in square millimeters of the bone regenerate; and the distance in millimeters from the bottom of the defect to the highest point of the regenerate. RESULTS: In the 8-week healing group, two dehiscences occurred with CCM. After 8 weeks, all treatment modalities showed no significant differences in the percentage of bone regenerate. After 16 weeks, the percentage of bone had increased for all treatment modalities without significant differences. For all groups, the defect fill height increased between weeks 8 and 16. The CCM group showed a statistically significant (P = 0.0202) increase over time and the highest value of all treatment modalities after 16 weeks of healing, CONCLUSIONS: The CCM showed a limited beneficial effect on bone regeneration in membrane-protected defects in dog mandibles when healing was uneventful. The observed premature membrane exposures resulted in severely compromised amounts of bone regenerate. This increased complication rate with CCM requires a more detailed preclinical and clinical examination before any clinical recommendations can be made.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The repair of bone defects with biomaterials depends on a sufficient vascularization of the implantation site. We analyzed the effect of pore size on the vascularization and osseointegration of biphasic calcium phosphate particles, which were implanted into critical-sized cranial defects in Balb/c mice. Dense particles and particles with pore sizes in the ranges 40-70, 70-140, 140-210, and 210-280 mum were tested (n = 6 animals per group). Angiogenesis, vascularization, and leukocyte-endothelium interactions were monitored for 28 days by intravital microscopy. The formation of new bone and the bone-interface contact (BIC) were determined histomorphometrically. Twenty-eight days after implantation, the functional capillary density was significantly higher with ceramic particles whose pore sizes exceeded 140 mum [140-210 mum: 6.6 (+/-0.8) mm/mm(2); 210-280 mum: 7.3 (+/-0.6) mm/mm(2)] than with those whose pore sizes were lesser than 140 mum [40-70 mum: 5.3 (+/-0.4) mm/mm(2); 70-140 mum: 5.6 (+/-0.3) mm/mm(2)] or with dense particles [5.7 (+/-0.8) mm/mm(2)]. The volume of newly-formed bone deposited within the implants increased as the pore size increased [40-70 mum: 0.07 (+/-0.02) mm(3); 70-140 mum: 0.10 (+/-0.06) mm(3); 140-210 mum: 0.13 (+/-0.05) mm(3); 210-280 mum: 0.15 (+/-0.06) mm(3)]. Similar results were observed for the BIC. The data demonstrates pore size to be a critical parameter governing the dynamic processes of vascularization and osseointegration of bone substitutes. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007.