813 resultados para continuous representations
Resumo:
Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.
Resumo:
The continuous ranked probability score (CRPS) is a frequently used scoring rule. In contrast with many other scoring rules, the CRPS evaluates cumulative distribution functions. An ensemble of forecasts can easily be converted into a piecewise constant cumulative distribution function with steps at the ensemble members. This renders the CRPS a convenient scoring rule for the evaluation of ‘raw’ ensembles, obviating the need for sophisticated ensemble model output statistics or dressing methods prior to evaluation. In this article, a relation between the CRPS score and the quantile score is established. The evaluation of ‘raw’ ensembles using the CRPS is discussed in this light. It is shown that latent in this evaluation is an interpretation of the ensemble as quantiles but with non-uniform levels. This needs to be taken into account if the ensemble is evaluated further, for example with rank histograms.
Resumo:
We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 01. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.
Resumo:
This study contributes to a central debate within contemporary generative second language (L2) theorizing: the extent to which adult learners are (un)able to acquire new functional features that result in a L2 grammar that is mentally structured like the native target (see White, 2003). The adult acquisition of L2 nominal phi-features is explored, with focus on the syntactic and semantic reflexes in the related domain of adjective placement in two experimental groups: English-speaking intermediate (n = 21) and advanced (n = 24) learners of Spanish, as compared to a native-speaker control group (n = 15). Results show that, on some of the tasks, the intermediate L2 learners appear to have acquired the syntactic properties of the Spanish determiner phrase but, on other tasks, to show some delay with the semantic reflexes of prenominal and postnominal adjectives. Crucially, however, our data demonstrate full convergence by all advanced learners and thus provide evidence in contra the predictions of representational deficit accounts (e.g., Hawkins & Chan, 1997; Hawkins & Franceschina, 2004; Hawkins & Hattori, 2006).
Resumo:
This chapter looks at the ways in which Anglo-American participants in the Liberation of France have been represented in French narratives in the decades since the Second World War, through the developing French historiography of Allied participation in the War, and through the various roles assigned to the Allies in key postwar memorialisation ceremonies in France.
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.