917 resultados para constant curvature
Resumo:
We report on some recent solutions of the Dyson-Schwinger equations for the infrared behavior of the gluon propagator and coupling constant, discussing their differences and proposing that these different behaviors can be tested through hadronic phenomenology. We discuss which kind of phenomenological tests can be applied to the gluon propagator and coupling constant, how sensitive they are to the infrared region of momenta and what specific solution is preferred by the experimental data.
Resumo:
The magneto-optical rotation at room temperature was measured for three Ga:S:La:O chalcogenide glasses at several laser lines in the visible. The first sample was a binary system constituted by 70 mol % Ga2S3 and 30 mol % La2O3, whereas in the second and third ones the lanthanum oxide was partially substituted by lanthanum sulfide, keeping the amount of gallium sulfide fixed. A pulsed magnetic field between 50 and 80 kG was used for the Faraday rotation measurements. The Verdet constant for one of the ternary samples was found to be as high as 0.205 min G(-1) cm(-1) at 543 nm, indicating that these chalcogenide glasses are very promising for magneto-optical applications. The data for each sample were fitted using the expected analytical expression for the magneto-optical dispersion. Measurements of the refractive index of the glasses at 632.8 nm are also reported. Data on the magneto-optical properties of two high Verdet constant, heavy-metal oxide diamagnetic glasses are also included for comparison. (C) 1999 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(99)00102-6].
Resumo:
This article assesses the use of the constant current (CC) method for characterizing dielectric films. The method is based on charging the sample with a constant current (current stress) and measuring the corresponding voltage rise under the closed circuit condition. Our article shows that the CC method is an alternative to the constant voltage stressing method to study the electric properties of nonpolar, ferroelectric, and polar polymers. The method was tested by determining the dielectric constant of polytetrafluoroethylene, and investigating the electric conduction in poly(ethylene terephthalate). For the ferroelectric polymer poly(vinylidene fluoride), it is shown that hysteresis loops and the dependence of the ferroelectric polarization on the electric field can be obtained. (C) 2001 American Institute of Physics.
Resumo:
We have developed a methodology for measuring the decay constant of the spontaneous fission of U-238, lambda(f), using nuclear particle track detectors where thermal neutron irradiation is unnecessary. This methodology is based on the fact that the radiation damage caused by spontaneous fission of trans-uranium elements bearing a mass number close to 238 are similar to U-238 spontaneous-fission ones. Loading a thick source of uranium (thickness greater than the fission fragment range) with a small amount of a suitable trans-uranium element (for instance, Pu-242, which presents a spontaneous fission half-life of 6.75(.)10(10) y), it is possible to determine the observation efficiency of a particle-track detector for fission fragments. Procedures concerning our thick source manufacture and uniformity tests of the trans-uranium distribution are also presented. These results make it possible for the exposure of thick uranium sources (without trans-uranium element) to lead to a lambda(f) value.
Resumo:
SrTiO3 thin films were prepared by the polymeric precursor method and deposited by spin-coating onto Pt/Ti/SiO2/Si(100) substrates. The spin-coated films heat treated at 700 degrees C were crack-free, dense, and homogeneous. Microstructural and morphological evaluations were followed by grazing incident X-ray, scanning electron microscopy and atomic force microscopy. Dielectric studies indicated a dielectric constant of about 475, which is higher than that of ceramic SrTiO3, and a factor dissipation of about 0.050 at 100 kHz. SrTiO3 thin films were found to have paraelectric properties with C-V characteristics. (C) 2000 Kluwer Academic Publishers.
Resumo:
This article reports systematic results of corona poling measurements obtained on biaxially stretched polyvinylidene fluoride films charged in dry air. Charging was performed using the constant current corona triode. The dependence of the poling process on the sample thickness, charging current, and successive charging processes was investigated. Phase transitions from alpha to delta and to beta phases were observed when virgin samples were corona charged. The thermal pulse technique showed that the polarization profiles during charging can be made consistently almost uniform and that the ferroelectric reorientation can be associated with the rising plateau region displayed on potential buildup curves. (C) 1995 American Institute of Physics.
Resumo:
The smallest known three-dimensional closed manifold of curvature k = -1 was discovered a few years ago by Weeks. This kind of manifold is constructed from a hyperbolic polyhedron with faces pair-wise identified. Here it is used as the comoving spatial section of a Friedmann cosmological model, in the spirit of Ellis and Schreiber's idea of small universes. Its nontrivial global topology has the effect of producing multiple images of single cosmic sources, and this is the basis of an attempt to solve a famous controversy about the redshifts of quasars.
Resumo:
This paper presents a new model for the representation of electrodes' filaments of hot-cathode fluorescent lamps, during preheating processes based on the injection of currents with constant root mean square (rms) values. The main improvement obtained with this model is the prediction of the R-h/R-c ratio during the preheating process, as a function of the preheating time and of the rms current injected in the electrodes. Using the proposed model, it is possible to obtain an estimate of the time interval and the current that should be provided by the electronic ballast, in order to ensure a suitable preheating process. is estimate of time and current can be used as input data in the design of electronic ballasts with programmed lamp start, permitting the prediction of the R-h/R-c ratio during the initial steps of the design (theoretical analysis and digital simulation). Therefore, the use of the proposed model permits to reduce the necessity of several empirical adjustments in the prototype, in order to set the operation of electronic ballasts during the preheating process. This fact reduces time and costs associated to the global design procedure of electronic ballasts.
Resumo:
Dichotomic maps are considered by means of the stability and asymptotic stability of the null solution of a class of differential equations with argument [t] via associated discrete equations, where [.] designates the greatest integer function.
Resumo:
The viscoelastic behavior of dried persimmons at different air-drying temperatures and velocities was evaluated. Air temperatures and velocities were varied according to a second-order central composite design, with temperature ranging from 40degreesC to 70degreesC and air velocity from 0.8 to 2.0 m/s. After drying, persimmons were equilibrated at four different water activities: 0.432, 0.576, 0.625 and 0.751. The rheological behavior of dried and conditioned persimmons was studied under uniaxial compression-relaxation tests. Three different rheological models were fitted to the experimental relaxation curves: Maxwell, Generalized Maxwell and Peleg and Normand. Based on the root mean square of residuals, the Generalized Maxwell model showed the best fit and a regression analysis was applied to obtain response surfaces for the model parameters. The dependence of the rheological properties on water activity was also analysed. Results showed that only the linear effect of air temperature was significant at a 5% level on the equilibrium stress and relaxation times. In a general way, these parameters increased with increasing air temperature and decreasing water activity. (C) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report experiments of electron spin resonance (ESR) of Cu2+ in polycrystalline samples of CaCu3Ti4O12 post-annealed in different atmospheres. After being synthesized by solid state reaction, pellets of CaCu3Ti4O12 were annealed for 24 h at 1000 degrees C under air, Ar or O-2. Our temperature dependent ESR data revealed for all samples nearly temperature independent g value (2.15(1)) and linewidth for T > T-N approximate to 25 K. However, the values of ESR linewidth are strongly affected by the oxygen content in the sample. For instance, argon post-annealed samples show a much larger linewidth than the O-2 or air post-annealed samples. We attribute this broadening to an increase of the dipolar homogeneous broadening of the Cu2+ ESR lines due to the presence of oxygen vacancies which induce an S=1/2 spin inside the TiO6 octahedra. Correlation between a systematic dependence of the ESR linewidth on the oxygen content and the high dielectric constant of these materials is addressed. Also, ESR, magnetic susceptibility, and specific heat data for a single crystal of CaCu3Ti4O12 and for polycrystals of CdCu3Ti4O12 are reported.
Resumo:
A number of studies have analyzed various indices of the final position variability in order to provide insight into different levels of neuromotor processing during reaching movements. Yet the possible effects of movement kinematics on variability have often been neglected. The present study was designed to test the effects of movement direction and curvature on the pattern of movement variable errors. Subjects performed series of reaching movements over the same distance and into the same target. However, due either to changes in starting position or to applied obstacles, the movements were performed in different directions or along the trajectories of different curvatures. The pattern of movement variable errors was assessed by means of the principal component analysis applied on the 2-D scatter of movement final positions. The orientation of these ellipses demonstrated changes associated with changes in both movement direction and curvature. However, neither movement direction nor movement curvature affected movement variable errors assessed by area of the ellipses. Therefore it was concluded that the end-point variability depends partly, but not exclusively, on movement kinematics.
Resumo:
A novel method is proposed for measuring the hysteresis loops of ferroelectric polymers. The samples need to have only one electrode and are poled by corona discharge in a constant current corona triode. It is shown how the sample surface potential and the charging current are related to the remanent polarization and coercive field, so that the hysteresis loops can be obtained. An illustrative example is given for samples of beta-PVDF for which the hysteresis cycles were remarkably close to those obtained with the traditional Sawyer-Tower circuit. Values of 80 MV/m and 70 mC/m2 were estimated for the coercive field and remanent polarization, respectively.
Resumo:
Experimental programs in constant and variable amplitude loading were performed to obtain a x N curves and to study retardation in fatigue crack growth due to overloads. The main aim of this research program was to analyse the effect of overload ratio and number of overload peaks. The effect of underloads, before and after the overload blocks was also studied. The generalised equation of Paris-Erdogan type was used for modelling of obtained data on crack propagation under constant amplitude load.