915 resultados para combinatorial auction
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
While blockade of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) T cell regulatory receptor has become a commonly utilized strategy in the management of advanced melanoma, many questions remain regarding the use of this agent in patient populations with autoimmune disease. We present a case involving the treatment of a patient with stage IV melanoma and ulcerative colitis (UC) with anti-CTLA-4 antibody immunotherapy. Upon initial treatment, the patient developed grade III colitis requiring tumor necrosis factor-alpha (TNF-α) blocking antibody therapy, however re-treatment with anti-CTLA-4 antibody following a total colectomy resulted in a rapid complete response accompanied by the development of a tracheobronchitis, a previously described extra-intestinal manifestation of UC. This case contributes to the evolving literature on the use of checkpoint inhibitors in patients also suffering from autoimmune disease, supports future clinical trials investigating the use of these agents in patients with autoimmune diseases, and suggests that an understanding of the specific molecular pathways involved in a patient's autoimmune pathology may provide insight into the development of more effective novel combinatorial immunotherapeutic strategies.
Resumo:
The paper describes the design of an efficient and robust genetic algorithm for the nuclear fuel loading problem (i.e., refuellings: the in-core fuel management problem) - a complex combinatorial, multimodal optimisation., Evolutionary computation as performed by FUELGEN replaces heuristic search of the kind performed by the FUELCON expert system (CAI 12/4), to solve the same problem. In contrast to the traditional genetic algorithm which makes strong requirements on the representation used and its parameter setting in order to be efficient, the results of recent research results on new, robust genetic algorithms show that representations unsuitable for the traditional genetic algorithm can still be used to good effect with little parameter adjustment. The representation presented here is a simple symbolic one with no linkage attributes, making the genetic algorithm particularly easy to apply to fuel loading problems with differing core structures and assembly inventories. A nonlinear fitness function has been constructed to direct the search efficiently in the presence of the many local optima that result from the constraint on solutions.
Resumo:
The paper considers the flow shop scheduling problems to minimize the makespan, provided that an individual precedence relation is specified on each machine. A fairly complete complexity classification of problems with two and three machines is obtained.
Resumo:
This paper presents two multilevel refinement algorithms for the capacitated clustering problem. Multilevel refinement is a collaborative technique capable of significantly aiding the solution process for optimisation problems. The central methodologies of the technique are filtering solutions from the search space and reducing the level of problem detail to be considered at each level of the solution process. The first multilevel algorithm uses a simple tabu search while the other executes a standard local search procedure. Both algorithms demonstrate that the multilevel technique is capable of aiding the solution process for this combinatorial optimisation problem.
Resumo:
Scheduling has become a major field within operational research with several hundred publications appearing each year. This paper explores the historical development of the subject since the mid-1950s when the landmark publications started to appear. A discussion of the main topics of scheduling research for the past five decades is provided, highlighting the key contributions that helped shape the subject. The main topics covered in the respective decades are combinatorial analysis, branch and bound, computational complexity and classification, approximate solution algorithms and enhanced scheduling models.
Resumo:
An analogy is established between the syntagm and paradigm from Saussurean linguistics and the message and messages for selection from the information theory initiated by Claude Shannon. The analogy is pursued both as an end itself and for its analytic value in understanding patterns of retrieval from full text systems. The multivalency of individual words when isolated from their syntagm is contrasted with the relative stability of meaning of multi-word sequences, when searching ordinary written discourse. The syntagm is understood as the linear sequence of oral and written language. Saussureâ??s understanding of the word, as a unit which compels recognition by the mind, is endorsed, although not regarded as final. The lesser multivalency of multi-word sequences is understood as the greater determination of signification by the extended syntagm. The paradigm is primarily understood as the network of associations a word acquires when considered apart from the syntagm. The restriction of information theory to expression or signals, and its focus on the combinatorial aspects of the message, is sustained. The message in the model of communication in information theory can include sequences of written language. Shannonâ??s understanding of the written word, as a cohesive group of letters, with strong internal statistical influences, is added to the Saussurean conception. Sequences of more than one word are regarded as weakly correlated concatenations of cohesive units.
Resumo:
Since the introduction of molecular computation1, 2, experimental molecular computational elements have grown3, 4, 5 to encompass small-scale integration6, arithmetic7 and games8, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size9 (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 m) used for synthesis of combinatorial libraries10, 11. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol12. Our focus on converting molecular science into technology concerning analog sensors13, 14, turns to digital logic devices in the present work.
Resumo:
We consider the problem of train planning or scheduling for large, busy, complex train stations, which are common in Europe and elsewhere, though not in North America. We develop the constraints and objectives for this problem, but these are too computationally complex to solve by standard combinatorial search or integer programming methods. Also, the problem is somewhat political in nature, that is, it does not have a clear objective function because it involves multiple train operators with conflicting interests. We therefore develop scheduling heuristics analogous to those successfully adopted by train planners using ''manual'' methods. We tested the model and algorithms by applying to a typical large station that exhibits most of the complexities found in practice. The results compare well with those found by traditional methods, and take account of cost and preference trade-offs not handled by those methods. With successive refinements, the algorithm eventually took only a few seconds to run, the time depending on the version of the algorithm and the scheduling problem. The scheduling models and algorithms developed and tested here can be used on their own, or as key components for a more general system for train scheduling for a rail line or network.Train scheduling for a busy station includes ensuring that there are no conflicts between several hundred trains per day going in and out of the station on intersecting paths from multiple in-lines and out-lines to multiple platforms, while ensuring that each train is allowed at least its minimum required headways, dwell time, turnaround time and trip time. This has to be done while minimizing (costs of) deviations from desired times, platforms or lines, allowing for conflicts due to through-platforms, dead-end platforms, multiple sub-platforms, and possible constraints due to infrastructure, safety or business policy.
Resumo:
We are discussing certain combinatorial and counting problems related to quadratic algebras. First we give examples which confirm the Anick conjecture on the minimal Hilbert series for algebras given by $n$ generators and $\frac {n(n-1)}{2}$ relations for $n \leq 7$. Then we investigate combinatorial structure of colored graph associated to relations of RIT algebra. Precise descriptions of graphs (maps) corresponding to algebras with maximal Hilbert series are given in certain cases. As a consequence it turns out, for example, that RIT algebra may have a maximal Hilbert series only if components of the graph associated to each color are pairwise 2-isomorphic.
Resumo:
A modification of liquid source misted chemical deposition process (LSMCD) with heating mist and substrate has developed, and this enabled to control mist penetrability and fluidity on sidewalls of three-dimensional structures and ensure step coverage. A modified LSMCD process allowed a combinatorial approach of Pb(Zr,Ti)O-3 (PZT) thin films and carbon nanotubes (CNTs) toward ultrahigh integration density of ferroelectric random access memories (FeRAMs). The CNTs templates were survived during the crystallization process of deposited PZT film onto CNTs annealed at 650 degrees C in oxygen ambient due to a matter of minute process, so that the thermal budget is quite small. The modified LSMCD process opens up the possibility to realize the nanoscale capacitor structure of ferroelectric PZT film with CNTs electrodes toward ultrahigh integration density FeRAMs.