990 resultados para color features
Resumo:
本研究通过我国CDBI、 KUN、PE、SZ等主要标本馆约3, 500份馆藏标本的研究和野外考察相结合,对我国蔷薇属(Rosa L.)芹叶组(Sect. pimpinellifoliae DC. ex Ser.)植物以及相关组的一些种进行了性状特征、形态和微形态的研究,对该组的一些种的形态特征描述进行了补充,同时给出详细的地理和海拔范围分布图。综合花粉以及种子(瘦果)形态的研究结果重新制订了分种检索表,同时,对该组一些形态相近容易混淆的种进行了对比研究,特别对一直存在争议的绢毛复合体(绢毛蔷薇R. sericea Lindl.和峨眉蔷薇R. omeiensis Rolfe)进行了大量宏观形态特征的研究,并用光学显微镜(LM)和扫描电镜(SEM)对二者的花粉及种子形态、微形态进行对比研究和分析,主要研究内容包括: 1. 芹叶组孢粉研究 对芹叶组的10个种及相关的4个组共17个种(18个样品)的植物花粉进行了光镜和扫描电镜观察和比较研究。研究结果表明:蔷薇属植物花粉粒大小为中等偏小,极轴长23.98[21.82(R. graciliflora Rehd. et Wils.)~29.18(R. tsinglingensis Pax. et Hoffm.)] μm,赤道轴长28.65[24.15(R. graciliflora)~34.70(R. davidii Crép.)] μm;花粉属辐射对称等极单花粉,花粉形态赤道面观呈球形到超长球形;极面观为三裂圆形或近圆形,三孔沟,孔缘加厚,具中部突起的桥状盖。花粉外壁纹饰为条纹状,光镜下形态特征相差不大;在电镜下外壁条纹和脊沟内穿孔的形状、大小和频度等特征,常具组至种水平上的可见变异,可作为组至种水平划分的依据。 根据花粉外壁条纹特征及穿孔形状和数目等特征,本研究将这些植物的花粉归为5个类型,并编制了分组检索表。同时,根据条纹状的清晰度,排列方式、条纹形状、穿孔大小及其频度等方面的差异,各有特点,对该组的10个种编制了分种检索表。 2. 芹叶组种子形态研究 应用光学显微镜和扫描电镜对我国蔷薇属芹叶组14个种及相关组5个组共36种植物的种子宏观形态及种皮微形态特征进行了观察研究。结果显示,蔷薇属种子形态多样,形状分别为肾形、卵形或锥形等;种子颜色以淡棕色、褐色以及土黄色为主;种子大小种间相差悬殊,相对体积为(长×宽×厚)36.66(4.79~114.47) mm3。光镜下,种子宏观形态特征具组内一致性,在扫描电镜下种子表面结构特征因种而异,其纹饰以网纹为主,可分为3种类型,即近平滑型、负网纹型和网纹型。研究结果表明,蔷薇属种子表面纹饰与地理分布关系不大,具有组及种内稳定性。其种子形态、大小、表而纹饰类型等特征可作为蔷薇属组及种水平上的分类依据。 结合蔷薇属花粉形态研究结果,得出蔷薇属种皮微形态特征与花粉外壁纹饰特征相吻合,在代表组及种的特征上具相关性的结论。同时根据种子形态、微形态结构特征的组间区别和种间差异编制了分组及芹叶组14个种的分种检索表。 3. 绢毛蔷薇复合体的研究 通过对大量标本的研究、野外观察以及扫描电镜对绢毛蔷薇复合体的花粉形态和种皮表面结构进行研究,通过对小叶、花粉及种子的形态定量分析结果支持Rowley (1959)的观点,将峨眉蔷薇处理为绢毛蔷薇的一个变种。 综上研究结果得出,蔷薇属植物的小叶片数目、花被基数以及花粉及种子形态等性状是较为稳定的,这些特征可很好的作为分类学依据。 The morphology, pollen exine sculpture and seed coat structure of the species of Rosa sect. Pimpinellifoliae and related sections were studied.About 3,500 herbarium specimens at CDBI, KUN, PE, and SZ were examined. Field work in Sichuan and Yunnan were conducted. Revisions of some species were carried out and a new key to species of sect. Pimpinellifoliae was proposed based on morphology, pollen exine sculpture and seed coat structure, Detailed morphological descriptions, geographical distributions and the altitudinal ranges of some taxa are given. The systematics of the species complex, the Rosa sericea complex (R. sericea Lindl. & R. omeiensis Rolfe), was emphasized. This thesis focused on the following three aspects: 1. Pollen morphology of Rosa sect. Pimpinellifoliae The pollen morphology of 18 samples representing 10 species of the Eurasian Rosa sect. Pimpinellifoliae and 7 additional species of related sections was investigated under LM and SEM. The pollen grains are monadic, actinomorphic, equipolar, medium-sized, spheroidal to perprolate in equatorial view, 3-lobed circular or semi-circular in polar view, crassimarginate, pontoperculate, and with striate exine sculpture. The striate sculpture varies among sections and species. The equatorial axis ranges from 17.97 μm (R. sikangensis) to 29.18 μm (R. tsinglingensis) with an average of 23.98 μm in length, while polar axis varies from 24.15 μm (R. gracilifolra) to 34.70 μm (R. davidii) with an average of 28.65 μm in length. The pollens can be divided into five types based on striate sculpture and a key to the sections sampled was proposed accordingly. The pollen morphology of species of sect. Pimpinellifoliae is more homogeneous and different from other sections sampled and did not support the two-series subdivisions in sect. Pimpinellifoliae. A key is also provided based on characers of pollen morphology among species in sect. Pimpinellifoliae. 2. Seed coat structure of Rosa sect. Pimpinellifoliae The seed coat structure of 39 samples representing 14 species of Rosa sect. Pimpinellifoliae and 12 additional species of related sections was investigated under LE and SEM. The seed relative volume (Length × width × thickness) ranges from 4.79 to 114.47 mm3 with an average of 36.66. mm3. The seeds are reniform, ovate or oblong in shape, with orange-brown, light brown or deep brown color. Seed coat sculpture was reticulate or striate-like reticulate. There was no difference in sculpture character of various speices under LM, while three types of seed coat sculpture were identified under SEM and a key to species based on the seed coat sculpture was provided. The three types of seed coat sculpture were nearly smooth, areolate and reticulate. The study of the seed coat sculpture of same species sampled from different populations showed that characters on the seed coat are stable, and thus the size, shape and seed coat sculpture can be used in species level identification. Interestingly, characters in the seed coat sculpture and the pollen morphology in sect. Pimpinellifoliae are consistent at in specific or sectional levels. A key to the 14 species sampled was given based on seed coat sculpture. 3. The study on Rosa sericea complex The Rosa sericea complex contains R. omeiensis and R. sericea. They are morphologically similar to one another and the systematic status of R. omeiensis has been controversial. In this study we examined large numbers of herbarium specimens of R. omeiensis and R. sericea and conducted field observations in the Hengduan Mts.. We also performed SEM study of pollen morphology and seed coat structure of R. omeiensis and R. sericea. We further carried out intensive morphometric study on the leaflet, pollen, and seed morphology. Our results showed that R. omeiensis should be sunk to be a variety of R. sericea, just as Rowley’s treatment in 1959. In conclusion, the features in the number of leaflet and petal, and the morphological character on pollen and seed are relatively stable. Therefore these characters are very useful in taxon delimition.
Resumo:
The effect of C-12(6+) heavy ions bombardment on mutagenesis in Salvia splendens Ker-Gawl. was studied. Dose-response studies indicated that there was a peak of malformation frequency of S. splendens at 200 Gy. Abnormal leaf mutants of the bileaf, trileaf and tetraleaf conglutination were selected. Meanwhile, a bicolor flower chimera with dark red and fresh red flower was isolated in M1 generation of S. splendens. Random amplified polymorphic DNA (RAPD) analysis demonstrated that DNA variations existed among the wild-type, fresh and dark red flower shoots of the chimera. The dark red flower shoots of the chimera were conserved and cultivated at a large-scale through micropropagation. MS supplemented with 2.0 mg/L BA and 0.3 mg/L NAA was the optimal medium in which the maximum proliferation ratio (5.2-fold) and rooting rate (88%) were achieved after 6 weeks. Our findings provide an important method to improve the ornamental quality of S. splendens.
Resumo:
Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.
Resumo:
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K-0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass m(s) and the color superconducting gap Delta. Increasing B and m(s) or decreasing Delta can stiffen the EOS which results in the larger maximum masses of neutron stars.
Resumo:
Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.
Resumo:
A new equivalent map projection called the parallels plane projection is proposed in this paper. The transverse axis of the parallels plane projection is the expansion of the equator and its vertical axis equals half the length of the central meridian. On the parallels plane projection, meridians are projected as sine curves and parallels are a series of straight, parallel lines. No distortion of length occurs along the central meridian or on any parallels of this projection. Angular distortion and the proportion of length along meridians (except the central meridian) introduced by the projection transformation increase with increasing longitude and latitude. A potential application of the parallels plane projection is that it can provide an efficient projection transformation for global discrete grid systems.