994 resultados para collective evolution
Resumo:
Formation of an amorphous cobalt based oxygen evolution catalyst called Co-Pi has been recently reported from a neutral phosphate buffer solution containing Co2+. But the concentration of Co2+ is as low as 0.5 mM due to poor solubility of a cobalt salt in phosphate medium. In the present study, a cobalt acetate based oxygen evolution catalyst (Co-Ac) is prepared from a neutral acetate buffer solution, where the solubility of Co2+ is very high (>100 times in comparison with phosphate buffer solution). The Co-Ac possesses better catalytic activity than the Co-Pi with an additional advantage of easy bulk scale preparation. The comparative studies on the oxygen evolution reaction (OER) activity of Co-Ac and Co-Pi in phosphate and acetate buffer electrolytes reveal that the Co-Ac exhibits enhanced synergistic catalytic activity in phosphate solution, probably due to partial substitution of acetate in the catalyst layer by phosphate, resulting in the formation of a Co-Ac-Pi catalyst.
Resumo:
This paper reports on an experimental study on the ploughing or orthogonal cutting in sand. Plane strain cutting or ploughing experiments were carried out on model Ottawa sand while being imaged at high resolution. The images obtained were further processed using image analysis and the evolution of the velocity and deformation fields were obtained from these analysis. The deformation fields show the presence of a clear shear zone in which the sand accrues deformation. A net change in the direction of the velocity of the sand is also clearly visible. The effective depth of cut of the sand also increases with continuous cutting as the sand reposes on itself. This deformation mechanics at the incipient stages of cutting is similar to that observed in metal cutting.
Resumo:
The recrystallization behaviour of cold-rolled nanocrystalline (nc) nickel has been studied at temperatures between 573 and 1273 K using bulk texture measurements and electron back-scattered diffraction. The texture in nc nickel is different from that of its microcrystalline counterpart, consisting of a strong Goss (G) and rotated Goss (RG) components at 773 K instead of the typical cube component. The texture evolution in nc Ni has been attributed to the prior deformation textures and nucleation advantage of G and RG grains.
Resumo:
We report the synthesis and physical property characterization of Prfe(1-x)Co(x)AsO (x=0.0-1.0). The studied samples are synthesized by through the solid state reaction route via the vacuum encapsulation method. The pristine compound PrFeAsO does not show superconductivity, but rather exhibits a metallic step like transition due to spin density wave (SOW) ordering of Fe moments (Fe-SDW) below 150 K, Followed by another upward step due to anomalous ordering of Pr moments (Pr-TN) at 12 K. Both the Fe-SDW and Pr-TN temperatures decrease monotonically with Co substitution at Fe site Superconductivity appears in a narrow range of x from 0.07 to 0.25 with maximum T-c at 11.12 K for x=0.15. Samples with x >= 0.25 exhibit metallic behavior right from 300 K down to 2 K, without any Fe-SDW or Pr-TN steps in resistivity. In fact, though Fe-SDW decreases monotonically, the pr(TN) disappeared even with x=0.02. The magneto transport measurements below 14 Ton superconducting polycrystalline Co doped Pi FeAs0 lead to extrapolated values of the upper critical fields H-c2(0)] of up to 60 T. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The characteristics of surface roughness span a range of length scales determined by the nature of the surface generation process. The mechanism by which material is removed at a length scale determines the roughness at that scale. Electropolishing preferentially reduces the peaks of surface protuberances at sub-micron length scales to produce smooth surfaces. The material removal in electropolishing occurs by two different mechanisms of anodic leveling and microsmoothing. Due to insufficient lateral resolution, individual contribution of these two mechanisms could not be measured by conventional roughness measurement techniques and parameters. In this work, we utilize the high lateral resolution offered by Atomic force microscopy along with the power spectral density method of characterization, to study the evolution of roughness during electropolishing. The power spectral density show two corner frequencies indicating the length scales over which the two mechanisms operate. These characteristic frequencies are found to be a function of the electropolishing time and hence can be used to optimize the electropolishing process.
Resumo:
The layered ternary chalcogenide, palladium phosphorous sulphide (PdPS), and its composite with reduced graphene oxide are shown to be efficient hydrogen evolution electrocatalysts. The Tafel slope and the exchange current density values associated with hydrogen evolution reaction are determined to be 46 mV dec(-1) and 1.4 x 10(-4) A cm(-2) respectively.
Resumo:
Extended x-ray absorption fine-structure studies have been performed at the Zn K and Cd K edges for a series of solid solutions of wurtzite Zn1-xCdxS samples with x = 0.0, 0.1, 0.25, 0.5, 0.75, and 1.0, where the lattice parameter as a function of x evolves according to the well-known Vegard's law. In conjunction with extensive, large-scale first-principles electronic structure calculations with full geometry optimizations, these results establish that the percentage variation in the nearest-neighbor bond distances are lower by nearly an order of magnitude compared to what would be expected on the basis of lattice parameter variation, seriously undermining the chemical pressure concept. With experimental results that allow us to probe up to the third coordination shell distances, we provide a direct description of how the local structure, apparently inconsistent with the global structure, evolves very rapidly with interatomic distances to become consistent with it. We show that the basic features of this structural evolution with the composition can be visualized with nearly invariant Zn-S-4 and Cd-S-4 tetrahedral units retaining their structural integrity, while the tilts between these tetrahedral building blocks change with composition to conform to the changing lattice parameters according to the Vegard's law within a relatively short length scale. These results underline the limits of applicability of the chemical pressure concept that has been a favored tool of experimentalists to control physical properties of a large variety of condensed matter systems.
Resumo:
The creation of synthetic systems that emulate the defining properties of living matter, such as motility, gradient-sensing, signaling, and replication, is a grand challenge of biomimetics. Such imitations of life crucially contain active components that transform chemical energy into directed motion. These artificial realizations of motility point in the direction of a new paradigm in engineering, through the design of emergent behavior by manipulating properties at the scale of the individual components. Catalytic colloidal swimmers are a particularly promising example of such systems. Here we present a comprehensive theoretical description of gradient-sensing of an individual swimmer, leading controllably to chemotactic or anti-chemotactic behavior, and use it to construct a framework for studying their collective behavior. We find that both the positional and the orientational degrees of freedom of the active colloids can exhibit condensation, signaling formation of clusters and asters. The kinetics of catalysis introduces a natural control parameter for the range of the interaction mediated by the diffusing chemical species. For various regimes in parameter space in the long-ranged limit our system displays precise analogs to gravitational collapse, plasma oscillations, and electrostatic screening. We present prescriptions for how to tune the surface properties of the colloids during fabrication to achieve each type of behavior.
Resumo:
The interfacial reactions between several Au(Cu) alloys and pure Sn were studied experimentally at 200A degrees C. Amounts of Cu in the AuSn4 and AuSn2 phases were as low as 1 at.%. On the basis of these experimental results there is no continuous solid solution between (Au,Cu)Sn and (Cu,Au)(6)Sn-5. The copper content of (Au,Cu)Sn was determined to be approximately 7-8 at.%. Substantial amounts of Au were present in the (Cu,Au)(6)Sn-5 and (Cu,Au)(3)Sn phases. Two ternary compounds were formed, one with stoichiometry varying from (Au40.5Cu39)Sn-20.5 to (Au20.2Cu59.3)Sn-20.5 (ternary ``B''), the other with the composition Au34Cu33Sn33 (ternary ``C''). The measured phase boundary compositions of the product phases are plotted on the available Au-Cu-Sn isotherm and the phase equilibria are discussed. The complexity and average thickness of the diffusion zone decreases with increasing Cu content except for the Au(40 at.%Cu) couple.
Resumo:
This is a transient two-dimensional numerical study of double-diffusive salt fingers in a two-layer heat-salt system for a wide range of initial density stability ratio (R-rho 0) and thermal Rayleigh numbers (Ra-T similar to 10(3) - 10(11)). Salt fingers have been studied for several decades now, but several perplexing features of this rich and complex system remain unexplained. The work in question studies this problem and shows the morphological variation in fingers from low to high thermal Rayleigh numbers, which have been missed by the previous investigators. Considerable variations in convective structures and evolution pattern were observed in the range of Ra-T used in the simulation. Evolution of salt fingers was studied by monitoring the finger structures, kinetic energy, vertical profiles, velocity fields, and transient variation of R-rho(t). The results show that large scale convection that limits the finger length was observed only at high Rayleigh numbers. The transition from nonlinear to linear convection occurs at about Ra-T similar to 10(8). Contrary to the popular notion, R-rho(t) first decrease during diffusion before the onset time and then increase when convection begins at the interface. Decrease in R-rho(t) is substantial at low Ra-T and it decreases even below unity resulting in overturning of the system. Interestingly, all the finger system passes through the same state before the onset of convection irrespective of Rayleigh number and density stability ratio of the system. (C) 2014 AIP Publishing LLC.
Resumo:
The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, Omega - kappa, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow in the disc leading to an unphysical behaviour. We show that this problem is overcome in the presence of a dark matter halo, which sets the angular momentum flow outwards as required for disc evolution, provided the lopsidedness is leading in nature. This, plus the well-known angular momentum transport in the inner parts due to spiral arms, can facilitate an inflow of gas from outside perhaps through the cosmic filaments.
Resumo:
We consider a setting in which a single item of content is disseminated in a population of mobile nodes by opportunistic copying when pairs of nodes come in radio contact. The nodes in the population may either be interested in receiving the content (referred to as destinations) or not yet interested in receiving the content (referred to as relays). We consider a model for the evolution of popularity, the process by which relays get converted into destinations. A key contribution of our work is to model and study the joint evolution of content popularity and its spread in the population. Copying the content to relay nodes is beneficial since they can help spread the content to destinations, and could themselves be converted into destinations. We derive a fluid limit for the joint evolution model and obtain optimal policies for copying to relay nodes in order to deliver content to a desired fraction of destinations, while limiting the fraction of relay nodes that get the content but never turn into destinations. We prove that a time-threshold policy is optimal for controlling the copying to relays, i.e., there is an optimal time-threshold up to which all opportunities for copying to relays are exploited, and after which relays are not copied to. We then utilize simulations and numerical evaluations to provide insights into the effects of various system parameters on the optimally controlled co-evolution model.
Resumo:
Ultra high molecular weight polyethylene (PE) is a structural polymer widely used in biomedical implants. The mechanical properties of PE can be improved either by controlled crystalline orientation (texture) or by the addition of reinforcing agents. However, the combinatorial effect has not received much attention. The objective of this study was to characterize the structure and mechanical properties of PE composites incorporating multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) subjected to hot rolling. The wide angle X-ray diffraction studies revealed that mechanical deformation resulted in a mixture of orthorhombic and monoclinic crystals. Furthermore, the presence of nanoparticles resulted in lower crystallinity in PE with smaller crystallite size, more so in RGO than in MWCNT composites. Rolling strengthened the texture of both orthorhombic and the monoclinic phases in PE. Presence of RGO weakened the texture of both phases of PE after rolling whereas MWCNT only mildly weakened the texture. This resulted in a reduction in the elastic modulus of RGO composites whereas moduli of neat polymer and the MWCNT composite increased after rolling. This study provides new insight into the role of nanoparticles in texture evolution during polymer processing with implications for processing of structural polymer composites.
Resumo:
Few-layer transition metal dichalcogenide alloys based on molybdenum sulphoselenides MoS2(1-x)Se2x] possess higher hydrogen evolution (HER) activity compared to pristine few-layer MoS2 and MoSe2. Variation of the sulphur or selenium content in the parent dichalcogenides reveals a systematic structure-activity relationship for different compositions of alloys, and it is found that the composition MoS1.0Se1.0 shows the highest HER activity amongst the catalysts studied. The tunable electronic structure of MoS2/MoSe2 upon Se/S incorporation probably assists in the realization of high HER activity.
Resumo:
Optical emission from emitters strongly interacting among themselves and also with other polarizable matter in close proximity has been approximated by emission from independent emitters. This is primarily due to our inability to evaluate the self-energy matrices and radiative properties of the collective eigenstates of emitters in heterogeneous ensembles. A method to evaluate self-energy matrices that is not limited by the geometry and material composition is presented to understand and exploit such collective excitations. Numerical evaluations using this method are used to highlight the significant differences between independent and the collective modes of emission in nanoscale heterostructures. A set of N Lorentz emitters and other polarizable entities is used to represent the coupled system of a generalized geometry in a volume integral approach. Closed form relations between the Green tensors of entity pairs in free space and their correspondents in a heterostructure are derived concisely. This is made possible for general geometries because the global matrices consisting of all free-space Green dyads are subject to conservation laws. The self-energy matrix can then be assembled using the evaluated Green tensors of the heterostructure, but a decomposition of its components into their radiative and nonradiative decay contributions is nontrivial. The relations to compute the observables of the eigenstates (such as quantum efficiency, power/energy of emission, radiative and nonradiative decay rates) are presented. A note on extension of this method to collective excitations, which also includes strong interactions with a surface in the near-field, is added. (C) 2014 Optical Society of America