930 resultados para classification algorithm
Resumo:
The supercritical fluid technology has been target of many pharmaceuticals investigations in particles production for almost 35 years. This is due to the great advantages it offers over others technologies currently used for the same purpose. A brief history is presented, as well the classification of supercritical technology based on the role that the supercritical fluid (carbon dioxide) performs in the process.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)
Resumo:
Natural mineral waters (still), effervescent natural mineral waters (sparkling) and aromatized waters with fruit-flavors (still or sparkling) are an emerging market. In this work, the capability of a potentiometric electronic tongue, comprised with lipid polymeric membranes, to quantitatively estimate routinely quality physicochemical parameters (pH and conductivity) as well as to qualitatively classify water samples according to the type of water was evaluated. The study showed that a linear discriminant model, based on 21 sensors selected by the simulated annealing algorithm, could correctly classify 100 % of the water samples (leave-one out cross-validation). This potential was further demonstrated by applying a repeated K-fold cross-validation (guaranteeing that at least 15 % of independent samples were only used for internal-validation) for which 96 % of correct classifications were attained. The satisfactory recognition performance of the E-tongue could be attributed to the pH, conductivity, sugars and organic acids contents of the studied waters, which turned out in significant differences of sweetness perception indexes and total acid flavor. Moreover, the E-tongue combined with multivariate linear regression models, based on sub-sets of sensors selected by the simulated annealing algorithm, could accurately estimate waters pH (25 sensors: R 2 equal to 0.99 and 0.97 for leave-one-out or repeated K-folds cross-validation) and conductivity (23 sensors: R 2 equal to 0.997 and 0.99 for leave-one-out or repeated K-folds cross-validation). So, the overall satisfactory results achieved, allow envisaging a potential future application of electronic tongue devices for bottled water analysis and classification.
Resumo:
pt. 1
Resumo:
pt. 2
Resumo:
El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme