833 resultados para cholinergic neurotransmission
Resumo:
Peripheral treatment with cholinergic or adrenergic agonists results in salivation and the possibility of synergy between cholinergic and adrenergic efferent mechanisms in the control of salivation has been proposed. Central injections of the cholinergic agonist pilocarpine also induce salivation, while the effects of central injections of noradrenaline (norepinephrine) are not known. Here (a) the effects of intracerebroventricular (icv) injection of noradrenaline on the salivation induced by icv or intraperitoneal (i.p.) injection of pilocarpine and (b) the receptors involved in the effects of central noradrenaline on pilocarpine-induced salivation were investigated. Male Holtzman rats with a stainless-steel guide cannula implanted into the lateral ventricle were used. Rats were anaesthetized with tribromoethanol (200 mg/kg body weight) and saliva was collected on small, preweighed cotton balls inserted into the animal's mouth. Noradrenaline (40, 80 and 160 nmol/l mul) injected icv reduced the salivary secretion induced by pilocarpine (0.5 mumol/l mul) injected icv. Noradrenaline (80 and 160 nmol/l mul) injected icv also reduced the salivation induced by pilocarpine (4 mumol/kg) injected i.p. Previous treatment with the alpha(2)-adrenergic receptor antagonists RX 821002 (40, 80 and 160 nmol/l mul) or yohimbine (160 and 320 nmol/l mul) abolished the inhibitory effect produced by icv injection of noradrenaline on pilocarpine-induced salivation in rats. Prazosin (alpha(1)-adrenergic receptor antagonist) injected icv did not change the effect of noradrenaline on pilocarpine-induced salivation. Prior icv injection of only RX 821002 (80 or 160 nmol/l mul) or yohimbine (320 nmol/l mul) increased pilocarpine-induced salivation. The results show that (1) contrary to its peripheral effects, noradrenaline acting centrally inhibits cholinergic-induced salivation in rats; (2) central mechanisms involving alpha(2)-adrenergic receptors inhibit pilocarpine-induced salivation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The cholinergic agonist pilocarpine injected intraperitoneally (ip) increases mean arterial pressure (MAP) and superior mesenteric (SM) vascular resistance and reduces submandibular/sublingual gland (SSG) vascular resistance. In the present study, we investigated the effects of electrolytic lesions of the anteroventral third ventricle (AV3V) region on the changes in MAP, SM, and SSG vascular resistances induced by ip pilocarpine. Male Holtzman rats anesthetized with urethane (1.0 g/kg) and chloralose (60 mg/kg) were submitted to sham or electrolytic AV3V lesions and bad pulsed Doppler flow probes implanted around the arteries. Contrary to sham rats, in 1-h and 2-day AV3V-lesioned rats, pilocarpine (4 mu mol/kg) ip decreased MAP (-41 +/- 4 and -26 4 mm Hg, respectively, vs. sham: 19 +/- 4 mm Hg) and SM (-48 +/- 11 and -45 +/- 10%, respectively, vs. sham: 41 +/- 10%) and hindlimb vascular resistances (-65 +/- 32 and -113 +/- 29%, respectively, vs. sham: 19 +/- 29%). In 7-day AV3V-lesioned rats, pilocarpine produced no changes on MAP and SM and hindlimb vascular resistances. Similar to sham rats, pilocarpine reduced SSG vascular resistance 1 h after AV3V lesions (-46 +/- 6%, vs. sham: -40 +/- 6%), but it produced no effect 2 days after AV3V lesions and increased SSG vascular resistance (37 6%) in 7-day AV3V-lesioned rats. The responses to ip pilocarpine were similar in 15-day sham and AV3V-lesioned rats. The cholinergic antagonist atropine methyl bromide (10 nmol) iv slightly increased the pressor response to ip pilocarpine in sham rats and abolished for 40 min the fall in MAP induced by ip pilocarpine in 1-h AV3V-lesioned rats. The results suggest that central mechanisms dependent on the AV3V region are involved in the pressor responses to ip pilocarpine. Although it was impaired 2 and 7 days after AV3V lesions, pilocarpine-induced salivary gland vasodilation was not altered 1 h after AV3V lesions which suggests that this vasodilation is not directly dependent on the AV3V region. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Our studies have focused on the effect of L-NG-nitroarginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), and L-arginine, the substrate of NOS, on salivary secretion induced by the administration of pilocarpine into the lateral cerebral ventricle (LV) of rats. The present study has also investigated the role of the beta-adrenergic agonists and antagonist injected into LV on the salivary secretion elicited by the injection of pilocarpine into LV. Male Holtzmann rats with a stainless-steel cannula implanted into the LV were used. The amount of salivary secretion was studied over a 7-min period after injection of pilocarpine, isoproterenol, propranolol, salbutamol, salmeterol, L-NAME and L-arginine. The injection of pilocarpine (10, 20, 40, 80 and 160 mug/mul) into LV produced a dose-dependent increase in salivary secretion. The injection of L-NAME (40 mug/mul) into LV alone produced an increase in salivary secretion. The injection of L-NAME into LV previous to the injection of pilocarpine produced an increase in salivary secretion. L-Arginine (30 mug/mul) injected alone into LV produced no change in salivary secretion. L-Arginine injected into LV attenuated pilocarpine-induced salivary secretion. The isoproterenol (40 nmol/mul) injected into LV increased into LV increased the salivary secretion. When injected previous to pilocarpine at a dose of 20 and 40 mug/mul, isoproterenol produced and additive effect on pilocarpine-induced salivary secretion. The 40-nmol/mul dose of propranolol injected alone or previous to pilocarpine into LV attenuated the pilocarpine-induced salivary secretion. The injection of salbutamol (40 nmol/mul), a specific beta-2 agonist, injected alone into LV produced no change in salivary secretion and when injected previous to pilocarpine produced and increase in salivary secretion. The 40-nmol/mul dose of salmeterol, a long-acting beta-2 agonist, injected into LV alone or previous to pilocarpine produced no change in salivary secretion. The results have shown that central injections of L-NAME and L-arginine interfere with the salivary secretion, which implies that might participate in pilocarpine-induced salivary secretion. The interaction between cholinergic and beta-adrenergic receptors of the central nervous system (CNS) for the control of salivary secretion can also be postulated. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The existence of neural connections between the medial preoptic area (MPOA) and the salivary glands and the increase in salivation by thermal or electrical stimulation of the MPOA have suggested an important role of MPOA in the control of salivary gland function. Although direct cholinergic activation of the salivary glands induces salivation, recent studies have suggested that salivation produced by i.p. pilocarpine may also depend on the activation of central mechanisms. Therefore, in the present study, we investigated the effects of bilateral electrolytic lesions of the MPOA on the salivation induced by i.p. pilocarpine. Adult male Holtzman rats (n = 11-12/group) with bilateral sham or electrolytic lesions of the MPOA were used. One, five, and fifteen days after the brain surgery, under ketamine anesthesia, the salivation was induced by i.p. pilocarpine (1 mg/kg of body weight), and saliva was collected using preweighted small cotton balls inserted into the animal's mouth. Pilocarpine-induced salivation was reduced 1 and 5 days after MPOA lesion (341 +/- 41 and 310 +/- 35 mg/7 min, respectively, vs. sham lesions 428 +/- 32 and 495 +/- 36 mg/7 min, respectively), but it was fully recovered at the 15th day post-lesion (561 +/- 49 vs. sham lesion: 618 27 mg/7 min). Lesions of the MPOA did not affect baseline non-stimulated salivary secretion. The results confirm the importance of MPOA in the control of salivation and suggest that its integrity is necessary for the full sialogogue effect of pilocarpine. However, alternative mechanisms probably involving other central nuclei can replace MPOA function in chronically lesioned rats allowing the complete recovery of the effects of pilocarpine. (c) 2006 Published by Elsevier B.V.
Resumo:
Central cholinergic activation by pilocarpine induces salivation dependent on the integrity of forebrain areas. The present work investigates the autonomic mediation of this salivation. Pilocarpine (500 nmol/rat) was injected into the lateral ventricle (LV) of tribromoethanol-anesthetized adult male rats. Preweighed cotton balls were inserted into the oral cavity and weighed again 7 min later. ol-adrenoceptor antagonists (3-50 mu mol/kg) prazosin (alpha(1)), yohimbine (alpha(2)) or propranolol (beta) injected intraperitoneally (i.p.) produced, 80%, 20% and 0% inhibition respectively of the LV pilocarpine-induced salivation. Intracerebroventricular injections (160 nmol) of the antagonists did not alter the effects of pilocarpine injected into the LV. Bilateral section of chorda tympani nerve or bilateral sympathetic cervical ganglionectomy produced 0% and 40% inhibition of pilocarpine-induced salivation, respectively. Ganglionectomy did not alter salivation induced by i.p, injection of pilocarpine (4 mu mol/kg). The results indicate that there is a large sympathetic contribution to the salivation induced by central cholinergic activation. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Cholinergic, agonists activate salivation and the alpha (2)-adrenergic and imidazoline receptor agonists induce opposite effects. In the present study, we investigated the effects of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of moxonidine (an a-adrenergic and imidazoline receptor agonist) on the salivation induced by the cholinergic agonist pilocarpine. Male Holtzman rats wish stainless steel cannula implanted into the lateral ventricle (LV) were used. In rats anesthetized with tribromoethanol (200 mg kg(-1)), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The treatment with moxonidine (5, 10 and 20 nmol in 1 mul) injected,i.c.v. reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (48 +/- 5, 17 +/- 2 and 15 +/- 2 mg min(-1) vs. control, 73 +/- 7 mg min(-1)). The same doses of moxonidine injected i.c.v. also reduced the salivary secretion induced by pilocarpine (500 nmol in 1 mul). injected i.c.v. (44 +/- 1, 14 +/- 2 and 20 +/- 3 mg min(-1) vs. control, 51 +/- 2 mg min(-1)). Injection of moxonidine (20 nmol in 0.1 ml) i.p. produced no chance on i.p. pilocarpine-induced salivation (58 +/- 4 mg min(-1) vs. control, 50 +/- 4 mg min(-1)). The results show that central, but not peripheral, injection of moxonidine inhibit,. pilocarpine-induced salivation, suggesting that central mechanisms activated by alpha (2)-adrenergic/imidazoline agonists inhibit cholinergic-induced salivation in rats. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 mug/mul), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 mug/mul) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 mug/mul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
In the present study we investigated the effects of electrolytic lesions of the lateral hypothalamus (LH) in the salivation induced by intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of the cholinergic agonist pilocarpine. Rats with sham or LH lesions and stainless steel cannulas implanted into the lateral ventricle (LV) were used. In rats anesthetized with urethane (1.25 mg/kg of body weight) saliva was collected using pre-weighed cotton balls inserted in the animal mouth during a period of 7 min following i.c.v. or i.p. injection of pilocarpine. Injection of pilocarpine (1 mg/kg of body weight) i.p. in sham-operated rats (6 h, 2, 7, and 15 days after the surgery) induced salivation (497+/-24, 452+/-26, 476+/-30, and 560+/-75 mg/7 min, respectively). The effects of i.p. pilocarpine was reduced 6 h, 2 and 7 days after LH lesions (162+/-37, 190+/-32, and 229+/-27mg/7 min, respectively), not 15 days after LH lesions (416+/-89mg/7 min). Injection of pilocarpine (120 mug/mul) i.c.v., in sham-operated rats (6 h, 2, 7, and 15 days after the surgery) also produced salivation (473 20, 382 16, 396 14, and 427 47 mg/7 min, respectively). The salivation induced by i.c.v. pilocarpine was also reduced 6 h, 2 and 7 days after LH lesions (243+/-19, 278+/-24, and 295+/-27 mg/7 min, respectively), not 15 days after LH lesions (385 48 mg/7 min). The present results show the participation of the LH in the salivation induced by central or peripheral injection of pilocarpine in rats, reinforcing the involvement of central mechanisms on pilocarpine-induced salivation. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Although cholinergic agonists such as pilocarpine injected peripherally can act directly on salivary glands to induce salivation, it is possible that their action in the brain may contribute to salivation. To investigate if the action in the brain is important to salivation, we injected pilocarpine intraperitoneally after blockade of central cholinergic receptors with atropine methyl bromide (atropine-mb). In male Holtzman rats with stainless steel cannulas implanted into the lateral ventricle and anesthetized with ketamine, atropine-mb (8 and 16 nmol) intracerebroventricularly reduced the salivation induced by pilocarpine (4 mumol/kg) intraperitoneally (133 +/- 42 and 108 +/- 22 mg/7 min, respectively, vs. saline, 463 +/- 26 mg/7 min), but did not modify peripheral cardiovascular responses to intravenous acetylcholine. Similar doses of atropine-mb intraperitoneally also reduced pilocarpine-induced salivation. Therefore, systemically injected pilocarpine also enters the brain and acts on central muscarinic receptors, activating autonomic efferent fibers to induce salivation.
Resumo:
Peripheral treatment with the cholinergic agonist pilocarpine induces intense salivation that is inhibited by central injections of the alpha(2)-adrenergic/imidazoline receptor agonist moxonidine. Salivary gland blood flow controlled by sympathetic and parasympathetic systems may affect salivation. We investigated the changes in mean arterial pressure (MAP) and in the vascular resistance in the submandibular/sublingual gland (SSG) artery, superior mesenteric (SM) artery and low abdominal aorta (hindlimb) in rats treated with intraperitoneal (i.p.) pilocarpine alone or combined with intracerebroventricular (i.c.v.) moxonidine. Male Holtzman rats with stainless steel cannula. implanted into lateral ventricle (LV) and anesthetized with urethane were used. Pilocarpine (4 mumol/kg of body weight) i.p. reduced SSG vascular resistance (-50 +/- 13% vs. vehicle: 5 +/- 3%). Pilocarpine i.p. also increased mesenteric vascular resistance (15 +/- 5% vs. vehicle: 2 +/- 3%) and MAP (16 +/- 3 mmHg, vs. vehicle: 2 +/- 3 mmHg). Moxonidine (20 nmol) i.c.v. increased SSG vascular resistance (88 +/- 12% vs. vehicle: 7 +/- 4%). When injected 15 min following i.c.v. moxonidine, pilocarpine i.p. produced no change on SSG vascular resistance. Pilocarpine-induced pressor responses and increase in mesenteric vascular resistance were not modified by i.c.v. moxonidine. The treatments produced no change in heart rate (HR) and hindlimb vascular resistance. The results show that (1) i.p. pilocarpine increases mesenteric vascular resistance and MAP and reduces salivary gland vascular resistance and (2) central moxonidine increases salivary gland vascular resistance and impairs pilocarpine-induced salivary gland vasodilatation. Therefore, the increase in salivary gland vascular resistance may play a role in the anti-salivatory response to central moxonidine. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nitric oxide modulates the cardiovascular effects elicited by acetylcholine in the NTS of awake rats
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Besides other physiological functions, adenosine-5'-triphosphate (ATP) is also a neurotransmitter that acts on purinergic receptors. In spite of the presence of purinergic receptors in forebrain areas involved with fluid-electrolyte balance, the effect of ATP on water intake has not been investigated. Therefore, we studied the effects of intracerebroventricular (icv) injections of ATP (100, 200 and 300 nmol/µL) alone or combined with DPCPX or PPADS (P1 and P2 purinergic antagonists, respectively, 25 nmol/µL) on water intake induced by water deprivation. In addition, the effect of icv ATP was also tested on water intake induced by intragastric load of 12% NaCl (2 mL/rat), acute treatment with the diuretic/natriuretic furosemide (20 mg/kg), icv angiotensin II (50 ng/µL) or icv carbachol (a cholinergic agonist, 4 nmol/µL), on sodium depletion-induced 1.8% NaCl intake, and on food intake induced by food deprivation. Male Holtzman rats (280-320 g, N = 7-11) had cannulas implanted into the lateral ventricle. Icv ATP (300 nmol/µL) reduced water intake induced by water deprivation (13.1 ± 1.9 vs saline: 19.0 ± 1.4 mL/2 h; P < 0.05), an effect blocked by pre-treatment with PPADS, but not DPCPX. Icv ATP also reduced water intake induced by NaCl intragastric load (5.6 ± 0.9 vs saline: 10.3 ± 1.4 mL/2 h; P < 0.05), acute furosemide treatment (0.5 ± 0.2 vs saline: 2.3 ± 0.6 mL/15 min; P < 0.05), and icv angiotensin II (2.2 ± 0.8 vs saline: 10.4 ± 2.0 mL/2 h; P < 0.05), without changing icv carbachol-induced water intake, sodium depletion-induced 1.8% NaCl intake and food deprivation-induced food intake. These data suggest that central ATP, acting on purinergic P2 receptors, reduces water intake induced by intracellular and extracellular dehydration.