966 resultados para ceramic joining
Resumo:
In the presented thesis work, meshfree method with distance fields is applied to create a novel computational approach which enables inclusion of the realistic geometric models of the microstructure and liberates Finite Element Analysis(FEA) from thedependance on and limitations of meshing of fine microstructural feature such as splats and porosity.Manufacturing processes of ceramics produce materials with complex porosity microstructure.Geometry of pores, their size and location substantially affect macro scale physical properties of the material. Complex structure and geometry of the pores severely limit application of modern Finite Element Analysis methods because they require construction of spatial grids (meshes) that conform to the geometric shape of the structure. As a result, there are virtually no effective tools available for predicting overall mechanical and thermal properties of porous materials based on their microstructure. This thesis is a separate handling and controls of geometric and physical computational models that are seamlessly combined at solution run time. Using the proposedapproach we will determine the effective thermal conductivity tensor of real porous ceramic materials featuring both isotropic and anisotropic thermal properties. This work involved development and implementation of numerical algorithms, data structure, and software.
Resumo:
Purpose: This was a retrospective cohort study designed to evaluate the clinical performance of ceramicveneered zirconia frameworks. Materials and Methods: Patients were recruited according to defined inclusion criteria. All patients were checked every 4 months from the time of definitive rehabilitation. At the end of 2013, all patients were rescheduled and rechecked for study purposes. The restorative procedures assessment was performed by previously established methods. The primary outcomes were the survival and success rates of the prosthesis. Descriptive statistics were used for the patient's demographics, implant distribution, and occurrence of complications. To study the survival and success of the prostheses, a Cox Regression analysis was used with a model constructed in a forward conditional stepwise mode. Predictive variables were included in the model, and adjusted survival curves were obtained for each outcome. Results: From 2008 to 2013, 75 patients were rehabilitated with 92 implant-supported, screw-retained, full-arch ceramic-veneered zirconia framework rehabilitations. The range of follow-up was between 6 months and 5 years. From the 92 full implant-supported screw-retained full-arch rehabilitations, Cox regression analysis indicated that within a 5-year time frame, the probability of framework fracture, major chipping, minor chipping, or any of the former combined to occur was 17.6%, 46.5%, 69.2%, and 90.5%, respectively. Conclusion: Results suggest zirconia as a suitable material for framework structure in implant-supported, full-arch rehabilitations. However, it experiences a high incidence of technical complications, mainly due to ceramic chipping. Further clinical studies should aim to ascertain the effects of clinical features and manufacturing procedures on the survival rates of these prostheses. © 2016 by Quintessence Publishing Co Inc.
Resumo:
The primary objective of this research was to perform an in vitro assessment of the ability of microscale topography to alter cell behaviour, with specific regard to producing favourable topography in an orthopaedic ceramic material suitable for implantation in the treatment of arthritis. Topography at microscale and nanoscale alters the bioactivity of the material. This has been used in orthopaedics for some time as seen with optimal pore size in uncemented hip and knee implants. This level of topography involves scale in hundreds of micrometres and allows for the ingrowth of tissue. Topography at smaller scale is possible thanks to progressive miniaturisation of technology. A topographic feature was created in a readily available clinically licensed polymer, Polycaprolcatone (PCL). The effect of this topography was assessed in vitro. The same topography was transferred to the latest generation composite orthopaedic ceramic, zirconia toughened alumina (ZTA). The fidelity of reproduction of the topography was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These investigations showed more accurate reproduction of the topography in PCL than ZTA with some material artefacts in the ZTA. Cell culture in vitro was performed on the patterned substrates. The response of osteoprogenitor cells was assessed using immunohistochemistry, real-time polymerase chain reaction and alizarin staining. These results showed a small effect on cell behaviour. Finally metabolic comparison was made of the effects created by the two different materials and the topography in each. The results have shown a reproducible topography in orthopaedic ceramics. This topography has demonstrated a positive osteogenic effect in both polycaprolactone and zirconia toughened alumina across multiple assessment modalities.
Resumo:
The aim of the project is the creation of a new model for the analysis of the political and social structures of the Northern Levant during the Iron Age, through the study of the production and circulation of ceramics in urban and rural centers. The project includes an innovative approach compared to a traditional contextual and analytical study of ceramic material. The geographical area under consideration represents an ideal context for understanding these dynamics, as a place of interaction between culturally different but constantly communicating areas (Eastern Mediterranean, Syria, Upper Mesopotamia). They corresponds to present-day southeastern Turkey and northern Syria, with the Mediterranean coast and the Euphrates River as limits to the west and east, respectively. The chronological interval taken into consideration by the study extends from the twelfth century BC. to the seventh century BC, corresponding to a phase of political fragmentation of the region into small-medium state entities and their subsequent conquest by the Neo-Assyrian empire starting from the end of the ninth century BC.
Resumo:
The increasing consumption rates among citizens and the uncontrolled exploitation of natural resources have made environmental pollution and management of waste the main problems facing humanity in its upcoming future. Together with generation of energy and transport, industrial production certainly plays a key role in the genesis of these problems. It is for this reason that the concepts of environmental, social and economic sustainability have emerged over the years as the cornerstones for future development. In light of this, the most forward-looking industries have begun to study their impact on environment and society in order to improve their performances and, at the same time, to anticipate the increasingly rigorous environmental regulations. In this work, various performance indicators related to the Italian ceramic tile sector will be presented and discussed. In particular, the emission factor of characteristic pollutants will be reported on a period of up to fifteen years while data regarding waste management, concentration of pollutants and emission legal limits for the last decade will be here disclosed as a result of a vast analysis on recorded data. The collected information describes the present level of performance of the ceramic tile manufacturing industries in Italy and shows how recycling is now a consolidated reality and how some pollutants, such as particulate matter, fluorine and lead are actually disappearing from production processes and how others, such as volatile organic compounds, are increasing instead. Moreover, the adoption of alternative raw materials for the production of ceramic tiles is discussed and the implementation of the recycling of various waste is addressed at experimental or industrial scale. Finally, the development of a new ceramic engobe with high content of waste glass (20%) is presented as an experimental example of reutilization of resources in the ceramic tile industry.
Resumo:
The first main conclusion drawn from this dissertation concerns the amount of Pt deposited on the asymmetric layer of membrane produced by tape casting porosity shaping method. Three different amounts were investigated (0.15, 1.5 and 4.5 mg cm-2 ). The most optimal performance, based on H2 permeation performances, was attained when 1.5 mg cm-2 of Pt was deposited on the porous layer, resulting in a 0.642 mL min-1 cm-2 permeated H2 when 80% H2 in He was employed as the feed. Pt deposition method is influenced by the concentration of the Pt precursor, which results in different morphology of the catalyst. The second development focused on further optimization on tape casting membranes concerning the solvent employed for the Pt catalyst deposition. The same concentration of Pt was employed, depositing 1.5 mg cm-2 on the porous side of the membrane, but a mixture of acetone and water was employed as solvent. This mixture allowed the suppression of effects leading to poorly dispersed particles. As a result, it was possible to achieve 0.74 mL min-1 cm-2 at 750°C with 50% H2 in He. Lastly, first-ever permeation performance measurements into an innovative ceramic membrane type for hydrogen separation was investigated. In-depth research was done on a group of hierarchically-structured BaCe0.65Zr0.20Y0.15O3-δ(BCZY) - Gd0.2Ce0.8O2-δ(GDC) membranes produced by freeze casting porosity shaping method. Membranes were investigated observing the effect of deposition solvent and the effect of porous layer thickness. Employing a mixture of Acetone and water resulted in better hydrogen permeation at temperatures (T > 650°C), reaching 0.26 mL min-1 cm-2 at 750°C with 50% H2 in He. The reduction of porous layer thickness led to a hydrogen flow of 0.33 mL min-1 cm-2 , at 750°C with 50% H2 in He.
Resumo:
The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.
Resumo:
A proper cast is essential for a successful rehabilitation with implant prostheses, in order to produce better structures and induce less strain on the implants. The aim of this study was to evaluate the precision of four different mold filling techniques and verify an accurate methodology to evaluate these techniques. A total of 40 casts were obtained from a metallic matrix simulating three unit implant-retained prostheses. The molds were filled using four different techniques in four groups (n = 10): Group 1 - Single-portion filling technique; Group 2 - Two-step filling technique; Group 3 - Latex cylinder technique; Group 4 - Joining the implant analogs previously to the mold filling. A titanium framework was obtained and used as a reference to evaluate the marginal misfit and tension forces in each cast. Vertical misfit was measured with an optical microscope with an increase of 120 times following the single-screw test protocol. Strain was quantified using strain gauges. Data were analyzed using one-way ANOVA (Tukey's test) (α =0.05). The correlation between strain and vertical misfit was evaluated by Pearson test. The misfit values did not present statistical difference (P = 0.979), while the strain results showed statistical difference between Groups 3 and 4 (P = 0.027). The splinting technique was considered to be as efficient as the conventional technique. The strain gauge methodology was accurate for strain measurements and cast distortion evaluation. There was no correlation between strain and marginal misfit.
Resumo:
Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA) denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10) of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network)-PMMA; and Vivodent, highly cross-linked PMMA) were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water) against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm) under 300 g (sliding force) after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (a=0.05). The wear of Trubyte Biotone (0.93 ± 0.14 mm) was significantly higher than that of both other types of teeth tested against abraded ceramic (p<0.05). The Vivodent tooth (0.64 ± 0.17 mm) exhibited the best wear resistance among the denture teeth tested against airborne particle abraded ceramic. There were no statistically significant differences (p>0.05) in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05). All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05). In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth.
Resumo:
The aim of this study was to investigate the histological and histomorphometrical bone response to three Biosilicates with different crystal phases comparing them to Bioglass®45S5 implants used as control. Ceramic glass Biosilicate and Bioglass®45S5 implants were bilaterally inserted in rabbit femurs and harvested after 8 and 12 weeks. Histological examination did not revealed persistent inflammation or foreign body reaction at implantation sites. Bone and a layer of soft tissue were observed in close contact with the implant surfaces in the medullary canal. The connective tissue presented few elongated cells and collagen fibers located parallel to implant surface. Cortical portion after 8 weeks was the only area that demonstrated significant difference between all tested materials, with Biosilicate 1F and Biosilicate 2F presenting higher bone formation than Bioglass®45S5 and Biosilicate® vitreo (p=0.02). All other areas and periods were statistically non-significant (p>0.05). In conclusion, all tested materials were considered biocompatible, demonstrating surface bone formation and a satisfactory behavior at biological environment.
Resumo:
Roofing provides the main protection against direct solar radiation in animal housing. Appropriate thermal properties of roofing materials tend to improve the thermal comfort in the inner ambient. Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers. Nonasbestos tiles were evaluated and compared with commercially available asbestos-cement sheets and ceramic tiles (frequently chosen as roofing materials for animal housing). Thermal conductivity and thermal diffusivity of tiles were determined by the parallel hot-wire method, along with the evaluation of the downside surface temperature. Cement-based components reinforced with sisal pulp presented better thermal performance at room temperature (25ºC), while those reinforced with sisal pulp added by polypropylene fibers presented better thermal performance at 60ºC. Non-asbestos cement tiles provided more efficient protection against radiation than asbestos corrugated sheets.
Resumo:
Este trabalho apresenta um estudo da influência de diferentes materiais de cobertura no conforto térmico de instalações destinadas à criação de frangos de corte. A pesquisa foi desenvolvida no Câmpus Experimental da UNESP de Dracena - SP. Quatro protótipos em escala real foram construídos, com área de 28 m² cada, cobertos com telha reciclada à base de embalagens longa vida, telha cerâmica, telha cerâmica pintada de branco e telha de fibrocimento. Os dados foram coletados durante o período de inverno de 2007, totalizando 90 dias. Com esses dados, foram calculados os índices de conforto térmico Carga Térmica Radiante (CTR) e a variável ambiental (Ta). Uma análise estatística por inferência e descritiva foi realizada com os valores do índice de conforto térmico e da variável ambiental. Com os resultados obtidos, é possível afirmar que a telha reciclada apresentou índices de conforto térmico semelhantes àqueles encontrados para as telhas cerâmicas. O protótipo coberto com telha de fibrocimento apresentou os maiores índices, e o coberto com telha cerâmica branca, os menores índices de conforto térmico. No entanto para o período de inverno e para os horários avaliados, todas as instalações apresentaram índices de conforto térmico fora da zona de termoneutralidade do frango de corte.
Resumo:
OBJETIVOS: Identificar os fatores associados à recuperação nutricional de crianças inscritas no Programa de Incentivo ao Combate às Carências Nutricionais (ICCN) no Município de Mogi das Cruzes. MÉTODOS: Foi realizado um ensaio institucional não controlado com 570 crianças inscritas no ICCN, que foram seguidas de julho de 1999 a julho de 2001. O estado nutricional foi avaliado segundo índice altura/idade, sendo consideradas eutróficas as crianças com escore z > - 1; de risco as que apresentaram z > - 2 e < - 1; desnutridas moderadas aquelas com z < - 2 e > - 3; e desnutridas graves as que apresentavam z < - 3. O impacto do ICCN foi analisado através de modelo multivariado com o uso de equações de estimação (GEE - Generalized Estimating Equations), sendo considerado significativo p<0,05. RESULTADOS/CONCLUSÃO: Ao final do seguimento, houve a melhora nutricional das crianças, com um gradiente, sendo maior a recuperação quanto maior a deficiência nutricional inicial. Observaram-se ganhos em altura de 1,12, 0,82, 0,57 e 0,45 desvios-padrão para as desnutridas graves, moderadas, em risco nutricional e eutróficas, respectivamente. Os fatores associados à evolução nutricional das crianças desnutridas foram a idade de 12 a 24 meses ao ingressar no ICCN, o peso ao nascer igual ou superior a 3 kg e o aleitamento materno. Os fatores associados negativamente à evolução nutricional neste grupo foram idade da mãe entre 20 a 40 anos e a ausência de trabalho remunerado materno. Para as crianças em risco, a renda familiar também se mostrou associada à melhor evolução nutricional. A experiência do ICCN em Mogi das Cruzes sugere que os programas de suplementação alimentar têm papel relevante na recuperação nutricional de desnutridos