883 resultados para calcium ions
Resumo:
We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386
Resumo:
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.
Resumo:
We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically driven devices using Si-ncs or Si-excess mediated EL.
Resumo:
Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
A scheme to generate long-range spin-spin interactions between three-level ions in a chain is presented, providing a feasible experimental route to the rich physics of well-known SU(3) models. In particular, we demonstrate different signatures of quantum chaos which can be controlled and observed in experiments with trapped ions.
Resumo:
Interactions between sodium and calcium regulating systems are poorly characterized but clinically important. Parathyroid hormone (PTH) levels are increased shortly after furosemide treatment by an unknown mechanism, and this effect is blunted by the previous administration of a calcimimetic in animal studies. Here, we explored further the possible underlying mechanisms of this observation in a randomized crossover placebo-controlled study performed in 18 human males. Volunteers took either cinacalcet (60 mg) or placebo and received a 20 mg furosemide injection 3 h later. Plasma samples were collected at 15-min intervals and analyzed for intact PTH, calcium, sodium, potassium, magnesium, phosphate, plasma renin activity (PRA), and aldosterone up to 6 h after furosemide injection. Urinary electrolyte excretion was also monitored. Subjects under placebo presented a sharp increase in PTH levels after furosemide injection. In the presence of cinacalcet, PTH levels were suppressed and marginal increase of PTH was observed. No significant changes in electrolytes and urinary excretion were identified that could explain the furosemide-induced increase in PTH levels. PRA and aldosterone were stimulated by furosemide injection but were not affected by previous cinacalcet ingestion. Expression of NKCC1, but not NKCC2, was found in parathyroid tissue. In conclusion, our results indicate that furosemide acutely stimulates PTH secretion in the absence of any detectable electrolyte changes in healthy adults. A possible direct effect of furosemide on parathyroid gland needs further studies.
Resumo:
L'arthrose est une maladie dégénérative des articulations due à une dégradation progressive du cartilage. La calcification de l'articulation (essentiellement due à des dépôts de cristaux de phosphate de calcium basique -cristaux BCP-) est une caractéristique de cette maladie. Cependant, le rôle des cristaux BCP reste à déterminer. Nous avons tout d'abord déterminé en utilisant des cultures primaires de chondrocytes que les cristaux de BCP induisaient la production de la cytokine IL-6, via une signalisation intracellulaire implicant les kinase Syk, PI3 et Jak et Stat3. Les cristaux de BCP induisent également la perte de protéoglycanes et l'expression de IL-6 dans des explants de cartlage humain et ces deux effets peuvent être bloqués par un inhibiteur de IL-6, le Tocilizumab. Par ailleurs, nous avons trouvé que l'IL-6 ajouté à des chondrocytes, favorisait la formation de cristax de BCP et augmentait l'expression de gènes impliqués dans le processus de minéralisation : Ank (codant pour un transporteur de pyrophooshate), Annexin5 (codant pour un canal calcique) et Pit-1 (codant pour un transporteur de phoshate). In vivo, les cristaux de BCP injectés dans l'articulation de souris induisent une érosion du cartilage. Dans un modèle murin d'arthrose du genou induit par ménisectomie, nous avons observé la formation progressive de cristaux de BCP. Fait intéressant, la présence de ces cristaux dans l'articulation précédait la destruction du cartilage. Un agent susceptible de bloquer les calcifications tel que le sodium thiosulfate (STS), administré à des souris ménisectomisées, inhibait le dépôt intra-articulaire de ces cristaux ainsi que l'érosion du cartilage. Nous avons identifié ainsi un cercle vicieux dans l'arthrose, les cristaux induisant l'interleukine-6 et l'interleukine-6 induisant la formation de ces cristaux. Nous avons étudié si on pouvait bloquer cette boucle cristaux de BCP-IL6 soit par des agents décalcifiants, soit par des inhibiteurs d'IL-6. In vitro, des anticorps anti IL- 6 ou des inhibiteurs de signalisation, inhibaient significativement IL-6 et la minéralisation induite par IL-6. De même le STS inhibait la formation de ces cristaux et la production de l'IL-6. Tout récemment, nous avons trouvé que des inhibiteurs de la xanthine oxidoréductase étaient aussi capables d'inhiber à la fois la production d'IL-6 et la minéralization des chondrocytes. Finalement, nous avons pu exclure un rôle du système IL-1 dans le modèle d'arthrose induite par ménisectomie, les souris déficientes pour IL-1a/ß, MyD88 et l'inflammasome NLRP3 n'étant pas protégées dans ce modèle d'arthrose. L'ensemble de nos résultats montre que les cristaux BCP sont pathogéniques dans l'arthrose et qu'un inhibiteur de minéralisation tel que le STS ou un inhibiteur de l'interleukine-6 constitueraient des nouvelles thérapies pour l'arthrose. -- Osteoarthritis (OA), the most common degenerative disorder of the joints, results from an imbalance between the breakdown and repair of the cartilage and surrounding articular structures. Joint calcification (essentially due to basic calcium phosphate (BCP) crystal deposition) is a characteristic feature of OA. However, the role of BCP crystal deposition in the pathogenesis of OA remains unclear[1][1]. We first demonstrated that in primary murine chondrocytes exogenous BCP crystals led to IL-6 up-modulation and that BCP crystal signaling pathways involved Syk and PI3 kinases, and also gp130 associated molecules, Jak2 and Stat3. BCP crystals also induced proteoglycan loss and IL-6 expression in human cartilage expiants, (which were significantly reduced by an IL-6 inhibitor). In addition, we found that in chondrocytes exogenous IL-6 promoted calcium-containing crystal formation and up- regulation of genes codifying for proteins involved in the calcification process: the inorganic pyrophosphate transport channel Ank, the calcium channel Annexinö and the sodium/phosphate cotransporter Piti. In vivo, BCP crystals injected into murine knee joints induced cartilage erosion. In the menisectomy model, increasing deposits, identified as BCP crystals, were progressively observed around the joint before cartilage erosion. These deposits strongly correlated with cartilage degradation and IL-6 expression. These results demonstrated that BCP crystals deposition and IL-6 production are mutually reinforcing in the osteoarthritic pathogenic process. We then investigated if we could block the BCP-IL6 loop by either targeting IL-6 production or BCP crystal deposits. Treatment of chondrocytes with anti-IL-6 antibodies or inhibitors of IL-6- signaling pathway significantly inhibited IL-6-induced crystal formation. Similarly, sodium thiosulfate (STS), a well-known systemic calcification inhibitor, decreased crystal deposition as well as HA-induced IL-6 secretion in chondrocytes and, in vivo, it decreased crystal deposits size and cartilage erosion in menisectomized knees. Interestingly, we also found that xanthine-oxidoreductase (XO) inhibitors inhibited both IL-6 production and calcium crystal depositis in chondrocytes. We began to unravel the mechanisms involved in this coordinate modulation of IL-6 and mineralization. STS inhibited Reactive Oxygen Species (ROS) generation and we are currently investigating whether XO represents a major source of ROS in chondrocyte mineralization. Finally, we ruled out that IL-1 activation/signaling plays a role in the murine model of OA induced by menisectomy, as IL-1a/ß, the IL-1 R associated molecule MyD88 and NLRP3 inflammasome deficient mice were not protected in this model of OA. Moreover TLR-1, -2, -4,-6 deficient mice had a phenotype similar to that of wild-type mice. Altogether our results demonstrated a self-amplification loop between BCP crystals deposition and IL-6 production, which represents an aggravating process in OA pathogenesis. As currently prescribed OA drugs are addressing OA symptoms,our results highlight a potential novel treatment strategy whereby inhibitors of calcium- containing crystal formation and IL-6 could be combined to form the basis of a disease modifying treatment and alter the course of OA.