921 resultados para blood flow and vascular resistance
Resumo:
BACKGROUND AND OBJECTIVES: The SBP values to be achieved by antihypertensive therapy in order to maximize reduction of cardiovascular outcomes are unknown; neither is it clear whether in patients with a previous cardiovascular event, the optimal values are lower than in the low-to-moderate risk hypertensive patients, or a more cautious blood pressure (BP) reduction should be obtained. Because of the uncertainty whether 'the lower the better' or the 'J-curve' hypothesis is correct, the European Society of Hypertension and the Chinese Hypertension League have promoted a randomized trial comparing antihypertensive treatment strategies aiming at three different SBP targets in hypertensive patients with a recent stroke or transient ischaemic attack. As the optimal level of low-density lipoprotein cholesterol (LDL-C) level is also unknown in these patients, LDL-C-lowering has been included in the design. PROTOCOL DESIGN: The European Society of Hypertension-Chinese Hypertension League Stroke in Hypertension Optimal Treatment trial is a prospective multinational, randomized trial with a 3 × 2 factorial design comparing: three different SBP targets (1, <145-135; 2, <135-125; 3, <125 mmHg); two different LDL-C targets (target A, 2.8-1.8; target B, <1.8 mmol/l). The trial is to be conducted on 7500 patients aged at least 65 years (2500 in Europe, 5000 in China) with hypertension and a stroke or transient ischaemic attack 1-6 months before randomization. Antihypertensive and statin treatments will be initiated or modified using suitable registered agents chosen by the investigators, in order to maintain patients within the randomized SBP and LDL-C windows. All patients will be followed up every 3 months for BP and every 6 months for LDL-C. Ambulatory BP will be measured yearly. OUTCOMES: Primary outcome is time to stroke (fatal and non-fatal). Important secondary outcomes are: time to first major cardiovascular event; cognitive decline (Montreal Cognitive Assessment) and dementia. All major outcomes will be adjudicated by committees blind to randomized allocation. A Data and Safety Monitoring Board has open access to data and can recommend trial interruption for safety. SAMPLE SIZE CALCULATION: It has been calculated that 925 patients would reach the primary outcome after a mean 4-year follow-up, and this should provide at least 80% power to detect a 25% stroke difference between SBP targets and a 20% difference between LDL-C targets.
Resumo:
Objectives: Glutamine synthetase is a critical step in the glutamate-glutamine cycle, the major mechanism of glutamate neurotransmission and is implicated in the mechanism of ammonia toxicity. 15N MRS is an alternative approach to 13C MRS in studying glutamate- glutamine metabolism. 15N MRS studies allow to measure an apparent glutamine synthesis rate (Vsyn) which reflects a combination of the glutamate- glutamine cycle activity (Vnt) and net glutamine accumulation. The net glutamine synthesis (Vsyn-Vnt) can be directly measured from 1H NMR. Therefore, the aim of this study was to perform in vivo localized 1H MRS interleaved with 15N MRS to directly measure the net glutamine synthesis rate and the apparent glutamine synthesis rate under 15N labeled ammonia infusion in the rat brain, respectively. Methods: 1H and 15N MRS data were acquired interleaved on a 9.4T system (Varian/Magnex Scientific) using 5 rats. 15NH4Cl solution was infused continuously into the femoral vein for up to 10 h (4.5 mmol/h/kg).1 The plasma ammonia concentration was increased to 0.95±0.08 mmol/L (Analox GM7 analyzer). 1H spectra were acquired and quantified as described previously.2 15N unlocalized and localized spectra were acquired using the sequence;3 and quantified using AMARES and an external reference method.4 The metabolic model used to analyze the total Gln and 5-15N labeled Gln time courses is shown on Figure 1A. Results: Glutamine concentration increased from 2.5±0.3 to 15±3.3 mmol/kg whereas the total glutamate concentrations remained unchanged (Figure 1B). The linear fit of the time-evolution of the total Gln from the 1H spectra gave the net synthesis flux (Vsyn-Vnt), which was 0.021± 0.006 mmol/min per g (Figure 1D). The 5-15N Gln peak (_271 ppm) was visible in the first and all subsequent scans, whereas the 2-15N Gln/Glu peak (_342 ppm) appeared after B1.5 h (Figure 1C). From the in vivo 5-15N Gln time course, Vsyn = 0.29±0.1 mmol/min per g and a plasma NH3 fractional enrichment of 71%±6% were calculated. Vnt was 0.26±0.1 mmol/min/g, obtained assuming a negligible Gln efflux.5 Vsyn and Vnt were within the range of 13C NMR measurements.6 Conclusion: The combination of 1H and 15N NMR allowed for the first time a direct and localized measurement of Vnt and apparent glutamine synthesis rate. Vnt is approximately one order of magnitude faster than the net glutamine accumulation.
Resumo:
BACKGROUND AND PURPOSE: This study aims to determine whether perfusion computed tomographic (PCT) thresholds for delineating the ischemic core and penumbra are time dependent or time independent in patients presenting with symptoms of acute stroke. METHODS: Two hundred seventeen patients were evaluated in a retrospective, multicenter study. Patients were divided into those with either persistent occlusion or recanalization. All patients received admission PCT and follow-up imaging to determine the final ischemic core, which was then retrospectively matched to the PCT images to identify optimal thresholds for the different PCT parameters. These thresholds were assessed for significant variation over time since symptom onset. RESULTS: In the persistent occlusion group, optimal PCT parameters that did not significantly change with time included absolute mean transit time, relative mean transit time, relative cerebral blood flow, and relative cerebral blood volume when time was restricted to 15 hours after symptom onset. Conversely, the recanalization group showed no significant time variation for any PCT parameter at any time interval. In the persistent occlusion group, the optimal threshold to delineate the total ischemic area was the relative mean transit time at a threshold of 180%. In patients with recanalization, the optimal parameter to predict the ischemic core was relative cerebral blood volume at a threshold of 66%. CONCLUSIONS: Time does not influence the optimal PCT thresholds to delineate the ischemic core and penumbra in the first 15 hours after symptom onset for relative mean transit time and relative cerebral blood volume, the optimal parameters to delineate ischemic core and penumbra.
Resumo:
The effects of continuous infusions of 2 synthetic atrial natriuretic peptides Ile12-(3-28) (rANP) and Meth12-(3-28) (hANP) eicosahexapeptides on blood pressure, heart rate, skin blood flow, glomerular filtration rate, renal plasma flow, apparent hepatic blood flow, and carotid blood flow were evaluated in normal volunteers. A rANP infusion at increasing rates (1-40 micrograms/min) induced a decrease in blood pressure, an increase in heart rate and in skin blood flow linearly related to the dose administered. In contrast, hANP infusion at 1 microgram/min for 4 hours induced an initial increase followed by a secondary fall in skin blood flow without blood pressure changes. A 4-hour rANP infusion at 0.5 and 5 mcg/min did not alter glomerular filtration rate but induced a delayed and dose-related fall in renal plasma flow from 531 to 461 (p less than 0.05), and from 554 to 342 ml/min (p less than 0.001) respectively, with a consequential rise in the filtration fraction. The 5 mcg/min dose furthermore significantly reduced blood pressure following a latency period of 2.5 hours. A 2-hours rANP infusion at 0.5 micrograms/min induced a fall in apparent hepatic blood flow from 1,087 to 863 ml/min (p less than 0.01), without simultaneously altering blood pressure. Similarly, a 2-hour hANP infusion at 2 micrograms/min altered neither blood pressure nor carotid blood flow. In conclusion, ANP infusion induced changes in systemic and regional hemodynamics varying in direction, intensity and duration.
Resumo:
Background: Elevated levels of g-glutamyl transferase (GGT) have been associated with subsequent risk of elevated blood pressure (BP), hypertension and diabetes. However, the causality of these relationships has not been addressed. Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. Such allocation is expected to be independent of any behavioural and environmental factors (known or unknown), allowing the analysis of largely unconfounded risk associations that are not due to reverse causation. Methods: We performed a cross-sectional analysis among 4361 participants to the population based CoLaus study. Associations of sex-specific GGT quartiles with systolic BP, diastolic BP and insulin levels were assessed using multivariable linear regression analyses. The rs2017869 GGT1 variant, which explained 1.6% of the variance in GGT levels, was used as an instrument to perform a Mendelian randomization analysis. Results: Median age of the study population was 53 years. After age and sex adjustment, GGT quartiles were strongly associated with systolic and diastolic BP (all p for linear trend <0.0001). After multivariable adjustment, these relationships were significantly attenuated, but remained significant for systolic (b(95%CI)¼1.30 (0.32;2.03), p¼0.007) and diastolic BP (b (95%CI)¼0.57 (0.02;1.13), p¼0.04). Using Mendelian randomization, we observed no positive association of GGT with either systolic BP (b (95%CI)¼-5.68 (-11.51-0.16), p¼0.06) or diastolic BP (b (95%CI)¼ -2.24 (-5.98;1.49) p¼0.24). The association of GGT with insulin was also attenuated after multivariable adjustment. Nevertheless, a strong linear trend persisted in the fully adjusted model (b (95%CI)¼0.07 (0.04;0.09), p<0.0001). Using Mendelian randomization, we observed a similar positive association of GGT with insulin (b (95%CI)¼0.19 (0.01-0.37), p¼0.04). Conclusion: In this study, we found evidence for a direct causal relationship between GGT and insulin, suggesting that oxidative stress may be causally implicated in the pathogenesis of type 2 diabetes mellitus.
Resumo:
Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.
Resumo:
Abstract: Plants cannot run away to escape attacking herbivores, but they defend themselves by producing anti-digestive proteins and toxic compounds (for example glucosinolates). The first goal of this thesis was to study changes in gene expression after insect attack using microarrays. The responses of Arabidopsis thaliana to feeding by the specialist Pieris rapae and the generalist Spodoptera liffora is were compared. We found that the transcript profiles after feeding by the two chewing insects were remarkably similar, although the generalist induced a slightly stronger response. The second goal was to evaluate the implication of the four signals jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) in the control of insect-regulated gene expression. Using signaling mutants, we observed that JA was the predominant signal and that ABA modulated defense gene expression. In contrast, SA and ET appeared to control slightly gene expression, but only after feeding by S. litforalis. The third goal was to establish whether plant responses are really effective against insects. In accordance with the transcript profile, both insects were affected by the JA-dependent defenses, as they performed better on the JA-insensitive mutant. S. littoralis also performed better on ABA-deficient mutants, providing evidence for the role of ABA in defense against insects. When testing indole or aliphatic glucosinolate deficient mutants, we found that they were also more susceptible to insect feeding, providing some of the first genetic evidence for the defensive role of glucosinolates in planta. Finally, a glutathione-deficient mutant, pad2-1, was also more susceptible to insect feeding and we could attribute this phenotype to a lowered accumulation of the major indole glucosinolate. In this thesis, we provide a comprehensive list of insect-regulated genes, including many transcription factors that constitute interesting candidate genes for the further study of insect-induced expression changes. Understanding how the plant responses to insects are regulated will provide tools for a better management of insect pest in the field. Résumé: Les plantes ne peuvent s'échapper pour fuir les insectes qui les attaquent, mais elles se défendent en produisant des protéines anti-digestives et des composés toxiques (par exemple des glucosinolates). Le premier but de cette thèse était d'étudier les changements de l'expression génétique lors d'attaque par des insectes en utilisant des puces à ADN. Nous avons comparé la réponse d'Arabidopsis thaliana à deux espèces d'insectes avec des habitudes alimentaires différentes : le spécialiste Pieris rapae et le généraliste Spodoptera littoralis. Nous avons trouvé que les profils de transcription après l'attaque par les deux insectes sont remarquablement similaires, bien que le généraliste induise une réponse légèrement plus forte. Le deuxième but était de déterminer l'implication de quatre signaux dans le contrôle de la réponse :l'acide jasmonique (JA), l'acide salicylique (SA), l'éthylène (ET), et l'acide abscissique (ABA). En utilisant de mutants de signalisation, nous avons montré que l'acide jasmonique était le signal prédominant et que l'acide abscissique modulait l'expression génétique. D'autre part, l'acide salicylique et l'éthylène contrôlent à un degré moindre l'expression génétique, mais seulement après l'attaque par S. littoralís. Le troisième but était d'établir si les réponses des plantes sont efficaces contre les insectes. En accord avec le profil de transcription, les deux espèces d'insectes se sont mieux développées sur un mutant insensible au JA, indiquant que les défenses contrôlées par ce signal sont cruciales pour la plante. De plus, les larves de S. littorales se sont mieux développées sur des mutants déficients en ABA, ce qui fournit une preuve du rôle de l'acide abscissique dans la défense contre les insectes. En testant des mutants déficients en glucosinolates de type indole ou aliphatique, nous avons trouvé qu'ils étaient plus sensibles aux insectes, démontrant ainsi le rôle défensif des glucosinolates in planta. Finalement, le mutant déficient en glutathion pad2-1 était aussi plus sensible à l'attaque des insectes, et nous avons pu attribuer ce phénotype à une plus faible augmentation d'un indole glucosinolate dans ce mutant. Dans cette thèse, nous avons mis en évidence un nombre important de gènes contrôlés par les insectes, comprenant de nombreux facteurs de transcription qui constituent des candidats intéressants pour`étudier plus en détail les changements d'expression génétique induits par les insectes. Une meilleure compréhension de la réponse des plantes contre l'attaque des insectes devrait nous permettre de développer de nouvelles stratégies pour mieux gérer les ravageurs des cultures.
Resumo:
P>Aim: To determine the effects of imperfect adherence (i.e. occasionally missing prescribed doses), and the influence of rate of loss of antihypertensive effect during treatment interruption, on the predicted clinical effectiveness of antihypertensive drugs in reducing mean systolic blood pressure (SBP) and cardiovascular disease (CVD) risk.Method:The effects of imperfect adherence to antihypertensive treatment regimens were estimated using published patterns of missed doses, and taking into account the rate of loss of antihypertensive effect when doses are missed (loss of BP reduction in mmHg/day; the off-rate), which varies between drugs. Outcome measures were the predicted mean SBP reduction and CVD risk, determined from the Framingham Risk Equation for CVD.Results:In patients taking 75% of prescribed doses (typical of clinical practice), only long-acting drugs with an off-rate of similar to 1 mmHg/day were predicted to maintain almost the full mean SBP-lowering effect throughout the modelled period. In such patients, using shorter-acting drugs (e.g. an off-rate of similar to 5-6 mmHg/day) was predicted to lead to a clinically relevant loss of mean SBP reduction of > 2 mmHg. This change also influenced the predicted CVD risk reduction; in patients with a baseline 10-year CVD risk of 27.0% and who were taking 75% of prescribed doses, a difference in off-rate from 1 to 5 mmHg/day led to a predicted 0.5% absolute increase in 10-year CVD risk.Conclusions:In patients who occasionally miss doses of antihypertensives, modest differences in the rate of loss of antihypertensive effect following treatment interruption may have a clinically relevant impact on SBP reduction and CVD risk. While clinicians must make every effort to counsel and encourage each of their patients to adhere to their prescribed medication, it may also be prudent to prescribe drugs with a low off-rate to mitigate the potential consequences of missing doses.
Resumo:
BACKGROUND: The effect of the increasing prevalence of obesity on blood pressure (BP) secular trends is unclear. We analyzed BP and body mass index secular trends between 1998 and 2006 in children and adolescents of the Seychelles, a rapidly developing island state in the African region. METHODS AND RESULTS: School-based surveys were conducted annually between 1998 and 2006 among all students in 4 school grades (kindergarten and 4th, 7th, and 10th years of compulsory school). We used the Centers for Disease Control and Prevention criteria to define obesity and elevated BP. The same methods and instruments were used in all surveys. Some 25 586 children and adolescents 4 to 18 years of age contributed 43 867 observations. Although the prevalence of obesity in boys and girls increased from 5.1% and 6.0%, respectively, in 1998 to 2000 to 8.0% and 8.7% in 2004 to 2006, the prevalence of elevated BP decreased from 8.4% and 9.8% to 6.9% and 7.8%. During the interval, mean age-adjusted body mass index increased by 0.57 kg/m(2) in boys and 0.58 kg/m(2) in girls. Mean age- and height-adjusted systolic BP decreased by -3.0 mm Hg in boys and -2.8 mm Hg in girls, whereas mean diastolic BP did not change substantially in boys (-0.2 mm Hg) and increased slightly in girls (0.4 mm Hg). CONCLUSIONS: At a population level, the marked increase in the prevalence of obesity in children and adolescents in the Seychelles was not associated with a commensurate secular rise in mean BP.
Resumo:
BACKGROUND AND PURPOSE: Most of the neuropathological studies in brain aging were based on the assumption of a symmetrical right-left hemisphere distribution of both Alzheimer disease and vascular pathology. To explore the impact of asymmetrical lesion formation on cognition, we performed a clinicopathological analysis of 153 cases with mixed pathology except macroinfarcts. METHODS: Cognitive status was assessed prospectively using the Clinical Dementia Rating scale; neuropathological evaluation included assessment of Braak neurofibrillary tangle and Ass deposition staging, microvascular pathology, and lacunes. The right-left hemisphere differences in neuropathological scores were evaluated using the Wilcoxon signed rank test. The relationship between the interhemispheric distribution of lesions and Clinical Dementia Rating scores was assessed using ordered logistic regression. RESULTS: Unlike Braak neurofibrillary tangle and Ass deposition staging, vascular scores were significantly higher in the left hemisphere for all Clinical Dementia Rating scores. A negative relationship was found between Braak neurofibrillary tangle, but not Ass staging, and vascular scores in cases with moderate to severe dementia. In both hemispheres, Braak neurofibrillary tangle staging was the main determinant of cognitive decline followed by vascular scores and Ass deposition staging. The concomitant predominance of Alzheimer disease and vascular pathology in the right hemisphere was associated with significantly higher Clinical Dementia Rating scores. CONCLUSIONS: Our data show that the cognitive impact of Alzheimer disease and vascular lesions in mixed cases may be assessed unilaterally without major information loss. However, interhemispheric differences and, in particular, increased vascular and Alzheimer disease burden in the right hemisphere may increase the risk for dementia in this group.
Resumo:
The bioavailability of nitric oxide (NO) within the vascular wall is limited by superoxide anions (O2.-). The relevance of extracellular superoxide dismutase (ecSOD) for the detoxification of vascular O2.- is unknown. We determined the involvement of ecSOD in the control of blood pressure and endothelium-dependent responses in angiotensin II-induced hypertension and renovascular hypertension induced by the two-kidney, one-clip model in wild-type mice and mice lacking the ecSOD gene. Blood pressure was identical in sham-operated ecSOD+/+ and ecSOD-/- mice. After 6 days of angiotensin II-treatment and 2 and 4 weeks after renal artery clipping, blood pressure was significantly higher in ecSOD-/- than ecSOD+/+ mice. Recombinant ecSOD selectively decreased blood pressure in hypertensive ecSOD-/- mice, whereas ecSOD had no effect in normotensive and hypertensive ecSOD+/+ mice. Compared with sham-operated ecSOD+/+ mice, sham-operated ecSOD-/- mice exhibited attenuated acetylcholine-induced relaxations. These responses were further depressed in vessels from clipped animals. Vascular O2.-, as measured by lucigenin chemiluminescence, was higher in ecSOD-/- compared with ecSOD+/+ mice and was increased by clipping. The antioxidant tiron normalized relaxations in vessels from sham-operated and clipped ecSOD-/-, as well as from clipped ecSOD+/+ mice. In contrast, in vivo application of ecSOD selectively enhanced endothelium-dependent relaxation in vessels from ecSOD-/- mice. These data reveal that endogenous ecSOD is a major antagonistic principle to vascular O2.-, controlling blood pressure and vascular function in angiotensin II-dependent models of hypertension. ecSOD is expressed in such an abundance that even in situations of high oxidative stress no relative lack of enzyme activity occurs.
Resumo:
We hypothesized that platelet-activating factor (PAF), a potent inflammatory mediator, could induce gas exchange abnormalities in normal humans. To this end, the effect of aerosolized PAF (2 mg/ml solution; 24 micrograms) on ventilation-perfusion (VA/Q) relationships, hemodynamics, and resistance of the respiratory system was studied in 14 healthy, nonatopic, and nonsmoking individuals (23 +/- 1 [SEM]yr) before and at 2, 4, 6, 8, 15, and 45 min after inhalation, and compared to that of inhaled lyso-PAF in 10 other healthy individuals (24 +/- 2 yr). PAF induced, compared to lyso-PAF, immediate leukopenia (P < 0.001) followed by a rebound leukocytosis (P < 0.002), increased minute ventilation (P < 0.05) and resistance of the respiratory system (P < 0.01), and decreased systemic arterial pressure (P < 0.05). Similarly, compared to lyso-PAF, PaO2 showed a trend to fall (by 12.2 +/- 4.3 mmHg, mean +/- SEM maximum change from baseline), and arterial-alveolar O2 gradient increased (by 16.7 +/- 4.3 mmHg) (P < 0.02) after PAF, because of VA/Q mismatch: the dispersion of pulmonary blood flow and that of ventilation increased by 0.45 +/- 0.1 (P < 0.01) and 0.29 +/- 0.1 (P < 0.04), respectively. We conclude that in normal subjects, inhaled PAF results in considerable immediate VA/Q inequality and gas exchange impairment. These results reinforce the notion that PAF may play a major role as a mediator of inflammation in the human lung.