928 resultados para automation of fit analysis
Resumo:
In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.
Resumo:
Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP) as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM) is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM) is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the behavior will occur. To overcome this weakness, a semiotic approach to generation of clinical pathway is introduced. The CP generated from SAM together with norms will enrich the knowledge representation of the domain through ontology modeling, which allows the recognition of human responsibilities and obligations and more importantly, the ultimate power of decision making in exceptional circumstances.
Resumo:
A system for continuous data assimilation is presented and discussed. To simulate the dynamical development a channel version of a balanced barotropic model is used and geopotential (height) data are assimilated into the models computations as data become available. In the first experiment the updating is performed every 24th, 12th and 6th hours with a given network. The stations are distributed at random in 4 groups in order to simulate 4 areas with different density of stations. Optimum interpolation is performed for the difference between the forecast and the valid observations. The RMS-error of the analyses is reduced in time, and the error being smaller the more frequent the updating is performed. The updating every 6th hour yields an error in the analysis less than the RMS-error of the observation. In a second experiment the updating is performed by data from a moving satellite with a side-scan capability of about 15°. If the satellite data are analysed at every time step before they are introduced into the system the error of the analysis is reduced to a value below the RMS-error of the observation already after 24 hours and yields as a whole a better result than updating from a fixed network. If the satellite data are introduced without any modification the error of the analysis is reduced much slower and it takes about 4 days to reach a comparable result to the one where the data have been analysed.
Resumo:
This paper explores the mapping of the environmental assessment process onto design and construction processes. A comparative case study method is used to identify and account for variations in the ‘fit’ between these two processes. The analysis compares eight BREEAM projects (although relevant to LEED, GreenStar, etc.) and distinguishes project-level characteristics and dynamics. Drawing on insights from literature on sustainable construction and assessment methods, an analytic framework is developed to examine the effect of clusters of project and assessment level elements on different types of fit (tight, punctual and bolt-on). Key elements distinguishing between types include: prior working experience with project team members, individual commitment to sustainable construction, experience with sustainable construction, project continuity, project-level ownership of the assessment process, and the nature and continuity of assessor involvement. Professionals with ‘sustainable’ experience used BREEAM judiciously to support their designs (along with other frameworks), but less committed professionals tended to treat it purely as an assessment method. More attention needs to be paid to individual levels of engagement with, and understanding of, sustainability in general (rather than knowledge of technical solutions to individual credits), to ownership of the assessment process and to the potential effect of discontinuities at the project level on sustainable design.
Resumo:
The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Resumo:
We present an analysis of the accuracy of the method introduced by Lockwood et al. (1994) for the determination of the magnetopause reconnection rate from the dispersion of precipitating ions in the ionospheric cusp region. Tests are made by applying the method to synthesised data. The simulated cusp ion precipitation data are produced by an analytic model of the evolution of newly-opened field lines, along which magnetosheath ions are firstly injected across the magnetopause and then dispersed as they propagate into the ionosphere. The rate at which these newly opened field lines are generated by reconnection can be varied. The derived reconnection rate estimates are then compared with the input variation to the model and the accuracy of the method assessed. Results are presented for steady-state reconnection, for continuous reconnection showing a sine-wave variation in rate and for reconnection which only occurs in square wave pulses. It is found that the method always yields the total flux reconnected (per unit length of the open-closed field-line boundary) to within an accuracy of better than 5%, but that pulses tend to be smoothed so that the peak reconnection rate within the pulse is underestimated and the pulse length is overestimated. This smoothing is reduced if the separation between energy channels of the instrument is reduced; however this also acts to increase the experimental uncertainty in the estimates, an effect which can be countered by improving the time resolution of the observations. The limited time resolution of the data is shown to set a minimum reconnection rate below which the method gives spurious short-period oscillations about the true value. Various examples of reconnection rate variations derived from cusp observations are discussed in the light of this analysis.
Resumo:
This paper investigates the feasibility of using approximate Bayesian computation (ABC) to calibrate and evaluate complex individual-based models (IBMs). As ABC evolves, various versions are emerging, but here we only explore the most accessible version, rejection-ABC. Rejection-ABC involves running models a large number of times, with parameters drawn randomly from their prior distributions, and then retaining the simulations closest to the observations. Although well-established in some fields, whether ABC will work with ecological IBMs is still uncertain. Rejection-ABC was applied to an existing 14-parameter earthworm energy budget IBM for which the available data consist of body mass growth and cocoon production in four experiments. ABC was able to narrow the posterior distributions of seven parameters, estimating credible intervals for each. ABC’s accepted values produced slightly better fits than literature values do. The accuracy of the analysis was assessed using cross-validation and coverage, currently the best available tests. Of the seven unnarrowed parameters, ABC revealed that three were correlated with other parameters, while the remaining four were found to be not estimable given the data available. It is often desirable to compare models to see whether all component modules are necessary. Here we used ABC model selection to compare the full model with a simplified version which removed the earthworm’s movement and much of the energy budget. We are able to show that inclusion of the energy budget is necessary for a good fit to the data. We show how our methodology can inform future modelling cycles, and briefly discuss how more advanced versions of ABC may be applicable to IBMs. We conclude that ABC has the potential to represent uncertainty in model structure, parameters and predictions, and to embed the often complex process of optimizing an IBM’s structure and parameters within an established statistical framework, thereby making the process more transparent and objective.
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Resumo:
Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.
Resumo:
The efficiency of a Wireless Power Transfer (WPT) system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT), the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined.
Resumo:
We present and analyse a space–time discontinuous Galerkin method for wave propagation problems. The special feature of the scheme is that it is a Trefftz method, namely that trial and test functions are solution of the partial differential equation to be discretised in each element of the (space–time) mesh. The method considered is a modification of the discontinuous Galerkin schemes of Kretzschmar et al. (2014) and of Monk & Richter (2005). For Maxwell’s equations in one space dimension, we prove stability of the method, quasi-optimality, best approximation estimates for polynomial Trefftz spaces and (fully explicit) error bounds with high order in the meshwidth and in the polynomial degree. The analysis framework also applies to scalar wave problems and Maxwell’s equations in higher space dimensions. Some numerical experiments demonstrate the theoretical results proved and the faster convergence compared to the non-Trefftz version of the scheme.
Resumo:
We give an a posteriori analysis of a semidiscrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (2014, SIAM J. Math. Anal., 46, 3518–3539). This framework allows energy-type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions and a set of elliptic reconstructions to apply the reduced relative entropy framework in this setting.
Resumo:
The paper explores pollination from a multi level policy perspective and analyses the institutional fit and inter play of multi-faceted pollination-related policies. First, it asks what the major policies are that frame pollination at the EU level. Second, it explores the relationship between the EU policies and localised ways of understanding pollination. Addressed third is how the concept of ecosystem services can aid in under- standing the various ways of framing and governing the situation. The results show that the policy systems affecting pollination are abundant and that these systems create different kinds of pressure on stakeholders, at several levels of society. The local-level concerns are more about the loss of pollination services than about loss of pollinators. This points to the problem of fit between local activity driven by economic reasoning and biodiversity-driven EU policies. Here we see the concept of ecosystem services having some potential, since its operationalisation can combine economic and environmental considerations. Further- more, the analysis shows how, instead of formal institutions, it seems that social norms, habits, and motivation are the key to understanding and developing effective and attractive governance measures.
Resumo:
Trypanosoma (Megatrypanum) theileri from cattle and trypanosomes of other artiodactyls form a clade of closely related species in analyses using ribosomal sequences. Analysis of polymorphic sequences of a larger number of trypanosomes from broader geographical origins is required to evaluate the Clustering of isolates as suggested by previous studies. Here, we determined the sequences of the spliced leader (SL) genes of 21 isolates from cattle and 2 from water buffalo from distant regions of Brazil. Analysis of SL gene repeats revealed that the 5S rRNA gene is inserted within the intergenic region. Phylogeographical patterns inferred using SL sequences showed at least 5 major genotypes of T. theileri distributed in 2 strongly divergent lineages. Lineage TthI comprises genotypes IA and IB from buffalo and cattle, respectively, from the Southeast and Central regions, whereas genotype IC is restricted to cattle from the Southern region. Lineage Tth II includes cattle genotypes IIA, which is restricted to the North and Northeast, and IIB, found in the Centre, West, North and Northeast. PCR-RFLP of SL genes revealed valuable markers for genotyping T. theileri. The results of this study emphasize the genetic complexity and corroborate the geographical structuring of T. theileri genotypes found in cattle.
Resumo:
A conceptual problem that appears in different contexts of clustering analysis is that of measuring the degree of compatibility between two sequences of numbers. This problem is usually addressed by means of numerical indexes referred to as sequence correlation indexes. This paper elaborates on why some specific sequence correlation indexes may not be good choices depending on the application scenario in hand. A variant of the Product-Moment correlation coefficient and a weighted formulation for the Goodman-Kruskal and Kendall`s indexes are derived that may be more appropriate for some particular application scenarios. The proposed and existing indexes are analyzed from different perspectives, such as their sensitivity to the ranks and magnitudes of the sequences under evaluation, among other relevant aspects of the problem. The results help suggesting scenarios within the context of clustering analysis that are possibly more appropriate for the application of each index. (C) 2008 Elsevier Inc. All rights reserved.