988 resultados para artificial surface cracks
Resumo:
This paper defines Die Surface Designer (DSD) System for fast draw die in the product development feasibility phase on surfaces coming from styling. We propose a CAD integration, for better support the design process in industry, particularly on the development of new products in automotive sector. The DSD system intends to reduce the lead time by providing and integrating flexible and efficient capabilities for testing early concepts from surface analysis points of view in automotive product development.
Resumo:
Duas larvas de Aedes scapularis foram encontradas em um criadouro artificial, no Município de Sertaneja, Norte do Estado do Paraná, Brasil, durante atividade de rotina para o controle de vetores da dengue.
Resumo:
This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) was carried out with three commercial NF membranes - NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 x 10(-4) m(2) of surface area and in a DSS Lab-unit M20 with a membrane surface area of 0.036 m2. The membranes hydraulic permeabilities ranged from 3.7 to 15.6 kg/h/m(2)/bar and the rejection coefficients to NaCl, Na2SO4 and Glucose are for NF90: 97%, 99% and 97%, respectively; for NF200: 66%, 98% and 90%, respectively and for NF270: 48%, 94% and 84%, respectively. Three sets of nanofiltration experiments were carried out: i) NF of aqueous model solutions of NP, IGEPAL and OP running in total recirculation mode; ii) NF of surface water from Rio Sado (Settibal, Portugal) running in concentration mode; iii) NF of surface water from Rio Sado inoculated with NP, IGEPAL and OP running in concentration mode. The results of model solutions experiments showed that the EDs rejection coefficients are approximately 100% for all the membranes. The results obtained for the surface water showed that the rejection coefficients to natural organic Matter (NOM) are 94%, 82% and 78% for NF90, NF200 and NF 270 membranes respectively, with and without inoculation of EDs. The rejection coefficients to EDs in surface water with and without inoculation of EDs are 100%, showing that there is a fraction of NOM of high molecular weight that retains the EDs in the concentrate and that there is a fraction of NOM of low molecular weight that permeates through the NF membranes free of EDs.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
OBJETIVO: Avaliar as redes neurais recorrentes enquanto técnica preditiva para séries temporais em saúde. MÉTODOS: O estudo foi realizado durante uma epidemia de cólera ocorrida no Estado do Ceará, em 1993 e 1994, a partir da sobremortalidade tendo como causa básica as infecções intestinais mal definidas (CID-9). O número mensal de óbitos por essa causa, referente ao período de 1979 a 1995 no Estado do Ceará, foram obtidos do Sistema de Informação de Mortalidade (SIM) do Ministério da Saúde. Estruturou-se uma rede com dois neurônios na camada de entrada, 12 na camada oculta, um neurônio na camada de saída e um na camada de memória. Todas as funções de ativação eram a função logística. O treinamento foi realizado pelo método de backpropagation, com taxa de aprendizado de 0,01 e momentum de 0,9, com dados de janeiro de 1979 a junho de 1991. O critério para fim do treinamento foi atingir 22.000 epochs. Compararam-se os resultados com os de um modelo de regressão binomial negativa. RESULTADOS: A predição da rede neural a médio prazo foi adequada, em dezembro de 1993 e novembro e dezembro de 1994. O número de óbitos registrados foi superior ao limite do intervalo de confiança. Já o modelo regressivo detectou sobremortalidade a partir de março de 1992. CONCLUSÕES: A rede neural se mostrou capaz de predição, principalmente no início do período, como também ao detectar uma alteração concomitante e posterior à ocorrência da epidemia de cólera. No entanto, foi menos precisa do que o modelo de regressão binomial, que se mostrou mais sensível para detectar aberrações concomitantes à circulação da cólera.
Resumo:
A temática dos recifes artificiais multifuncionais é relativamente recente, sendo que o primeiro recife artificial multifuncional construído data do ano de 1999 (Perth, Austrália). A palavra multifuncional está associada aos múltiplos propósitos que se podem atingir com a construção de uma estrutura destas, sendo eles, a proteção costeira, o aumento da biodiversidade local, a melhoria da qualidade das ondas para o Surf e a promoção do turismo ligado aos desportos de ondas. Para dar resposta a um caso de proteção costeira, na zona marítima adjacente à praia de Leirosa, Portugal, foi pensada uma construção de um recife artificial que funcione como obra de proteção do sistema dunar local e que, adicionalmente melhore as condições locais para a prática de Surf. Este trabalho descreve a análise de duas soluções de recife (em forma de “V”, formando um ângulo de 45º e 66º, entre si), através dos valores das características das ondas (altura, período e direção) e parâmetros de surfabilidade (linha de rebentação, número de Iribarren e ângulo de rebentação), para uma gama alargada de condições de agitação frequente. Para tal, foi necessário caracterizar a agitação marítima, através do modelo numérico SWAN para determinação dos casos de agitação mais frequentes na zona marítima adjacente ao local de implantação do recife e para, posteriormente, se proceder à sua utilização no modelo numérico DREAMS, que permitiu a simulação da propagação das ondas sobre o recife. A comparação dos resultados do modelo numérico DREAMS para as situações de com e sem recife (para as duas soluções de recife) permitiu avaliar a influência do mesmo em termos de alturas de onda, linha de rebentação e ângulo de rebentação, tendo-se chegado a resultados satisfatórios do ponto de vista do melhoramento das condições locais para a prática do Surf.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
EPIA 2013 - XVI Portuguese Conference on Artificial Intelligence Angra do Heroísmo, Azores, Portugal, 9 – 12 September.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Tese de Doutoramento, Geografia (Ordenamento do Território), 25 de Novembro de 2013, Universidade dos Açores.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nanotechnology is an important emerging industry with a projected annual market of around one trillion dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions. Although there are advantages on the utilization of these nano-scale materials, questions related with its impact over the environment and human health must be addressed too, so that potential risks can be limited at early stages of development. At this time, occupational health risks associated with manufacturing and use of nanoparticles are not yet clearly understood. However, workers may be exposed to nanoparticles through inhalation at levels that can greatly exceed ambient concentrations. Current workplace exposure limits are based on particle mass, but this criteria could not be adequate in this case as nanoparticles are characterized by very large surface area, which has been pointed out as the distinctive characteristic that could even turn out an inert substance into another substance exhibiting very different interactions with biological fluids and cells. Therefore, it seems that, when assessing human exposure based on the mass concentration of particles, which is widely adopted for particles over 1 μm, would not work in this particular case. In fact, nanoparticles have far more surface area for the equivalent mass of larger particles, which increases the chance they may react with body tissues. Thus, it has been claimed that surface area should be used for nanoparticle exposure and dosing. As a result, assessing exposure based on the measurement of particle surface area is of increasing interest. It is well known that lung deposition is the most efficient way for airborne particles to enter the body and cause adverse health effects. If nanoparticles can deposit in the lung and remain there, have an active surface chemistry and interact with the body, then, there is potential for exposure. It was showed that surface area plays an important role in the toxicity of nanoparticles and this is the metric that best correlates with particle-induced adverse health effects. The potential for adverse health effects seems to be directly proportional to particle surface area. The objective of the study is to identify and validate methods and tools for measuring nanoparticles during production, manipulation and use of nanomaterials.