964 resultados para artificial neural network (ANN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multimedia mining primarily involves, information analysis and retrieval based on implicit knowledge. The ever increasing digital image databases on the Internet has created a need for using multimedia mining on these databases for effective and efficient retrieval of images. Contents of an image can be expressed in different features such as Shape, Texture and Intensity-distribution(STI). Content Based Image Retrieval(CBIR) is an efficient retrieval of relevant images from large databases based on features extracted from the image. Most of the existing systems either concentrate on a single representation of all features or linear combination of these features. The paper proposes a CBIR System named STIRF (Shape, Texture, Intensity-distribution with Relevance Feedback) that uses a neural network for nonlinear combination of the heterogenous STI features. Further the system is self-adaptable to different applications and users based upon relevance feedback. Prior to retrieval of relevant images, each feature is first clustered independent of the other in its own space and this helps in matching of similar images. Testing the system on a database of images with varied contents and intensive backgrounds showed good results with most relevant images being retrieved for a image query. The system showed better and more robust performance compared to existing CBIR systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present paper is to select the best compromise irrigation planning strategy for the case study of Jayakwadi irrigation project, Maharashtra, India. Four-phase methodology is employed. In phase 1, separate linear programming (LP) models are formulated for the three objectives, namely. net economic benefits, agricultural production and labour employment. In phase 2, nondominated (compromise) irrigation planning strategies are generated using the constraint method of multiobjective optimisation. In phase 3, Kohonen neural networks (KNN) based classification algorithm is employed to sort nondominated irrigation planning strategies into smaller groups. In phase 4, multicriterion analysis (MCA) technique, namely, Compromise Programming is applied to rank strategies obtained from phase 3. It is concluded that the above integrated methodology is effective for modeling multiobjective irrigation planning problems and the present approach can be extended to situations where number of irrigation planning strategies are even large in number. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel algorithm for placement of standard cells in VLSI circuits based on an analogy of this problem with neural networks. By employing some of the organising principles of these nets, we have attempted to improve the behaviour of the bipartitioning method as proposed by Kernighan and Lin. Our algorithm yields better quality placements compared with the above method, and also makes the final placement independent of the initial partition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An adaptive optimization algorithm using backpropogation neural network model for dynamic identification is developed. The algorithm is applied to maximize the cellular productivity of a continuous culture of baker's yeast. The robustness of the algorithm is demonstrated in determining and maintaining the optimal dilution rate of the continuous bioreactor in presence of disturbances in environmental conditions and microbial culture characteristics. The simulation results show that a significant reduction in time required to reach optimal operating levels can be achieved using neural network model compared with the traditional dynamic linear input-output model. The extension of the algorithm for multivariable adaptive optimization of continuous bioreactor is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper examines the suitability of the generalized data rule in training artificial neural networks (ANN) for damage identification in structures. Several multilayer perceptron architectures are investigated for a typical bridge truss structure with simulated damage stares generated randomly. The training samples have been generated in terms of measurable structural parameters (displacements and strains) at suitable selected locations in the structure. Issues related to the performance of the network with reference to hidden layers and hidden. neurons are examined. Some heuristics are proposed for the design of neural networks for damage identification in structures. These are further supported by an investigation conducted on five other bridge truss configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, parallel computers have been attracting attention for simulating artificial neural networks (ANN). This is due to the inherent parallelism in ANN. This work is aimed at studying ways of parallelizing adaptive resonance theory (ART), a popular neural network algorithm. The core computations of ART are separated and different strategies of parallelizing ART are discussed. We present mapping strategies for ART 2-A neural network onto ring and mesh architectures. The required parallel architecture is simulated using a parallel architectural simulator, PROTEUS and parallel programs are written using a superset of C for the algorithms presented. A simulation-based scalability study of the algorithm-architecture match is carried out. The various overheads are identified in order to suggest ways of improving the performance. Our main objective is to find out the performance of the ART2-A network on different parallel architectures. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network has been used to predict the flow intermittency from velocity signals in the transition zone in a boundary layer. Unlike many of the available intermittency detection methods requiring a proper threshold choice in order to distinguish between the turbulent and non-turbulent parts of a signal, a trained neural network does not involve any threshold decision. The intermittency prediction based on the neural network has been found to be very satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural network models of associative memory exhibit a large number of spurious attractors of the network dynamics which are not correlated with any memory state. These spurious attractors, analogous to "glassy" local minima of the energy or free energy of a system of particles, degrade the performance of the network by trapping trajectories starting from states that are not close to one of the memory states. Different methods for reducing the adverse effects of spurious attractors are examined with emphasis on the role of synaptic asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the capability of the neural networks as a computational tool for solving constrained optimization problem, arising in routing algorithms for the present day communication networks. The application of neural networks in the optimum routing problem, in case of packet switched computer networks, where the goal is to minimize the average delays in the communication have been addressed. The effectiveness of neural network is shown by the results of simulation of a neural design to solve the shortest path problem. Simulation model of neural network is shown to be utilized in an optimum routing algorithm known as flow deviation algorithm. It is also shown that the model will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology. (C) 2002 Elsevier Science Ltd. All rights reserved.