961 resultados para arcuate nucleus of the hypothalamus
Resumo:
The Xenopus laevis vitellogenin B1 promoter was assembled into nucleosomes in an oocyte extract. Subsequent RNA polymerase II-dependent transcription from these DNA templates fully reconstituted in chromatin in a HeLa nuclear extract was increased 50-fold compared with naked DNA. Remarkably, under specific conditions, production of a high level of transcripts occurred at very low DNA (1 ng/microliter) and HeLa nuclear protein (1.6 micrograms/microliters) concentrations. When partially reconstituted templates were used, transcription efficiency was intermediate between that of fully reconstituted and naked DNA. These results implicate chromatin in the process of the transcriptional activation observed. Depletion from the oocyte assembly extract of an NF-I-like factor which binds in the promoter region upstream of the TATA box (-114 to -101) or deletion from the promoter of the region interacting with this factor reduced the transcriptional efficiency of the assembled templates by a factor of 5, but transcription of these templates was still 10 times higher than that of naked DNA. Together, these results indicate that the NF-I-like factor participates in the very efficient transcriptional potentiation of the vitellogenin B1 promoter which occurs during nucleosome assembly.
Resumo:
Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generation.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that can be activated by fatty acids and peroxisome proliferators. The PPAR alpha subtype mediates the pleiotropic effects of these activators in liver and regulates several target genes involved in fatty acid catabolism. In primary hepatocytes cultured in vitro, the PPAR alpha gene is regulated at the transcriptional level by glucocorticoids. We investigated if this hormonal regulation also occurs in the whole animal in physiological situations leading to increased plasma corticosterone levels in rats. We show here that an immobilization stress is a potent and rapid stimulator of PPAR alpha expression in liver but not in hippocampus. The injection of the synthetic glucocorticoid dexamethasone into adult rats produces a similar increase in PPAR alpha expression in liver, whereas the administration of the antiglucocorticoid RU 486 inhibits the stress-dependent stimulation. We conclude that glucocorticoids are major mediators of the stress response. Consistent with this hormonal regulation, hepatic PPAR alpha mRNA and protein levels follow a diurnal rhythm, which parallels that of circulating corticosterone. To test the effects of variations in PPAR alpha expression on PPAR alpha target gene activity, high glucocorticoid-dependent PPAR alpha expression was mimicked in cultured primary hepatocytes. Under these conditions, hormonal stimulation of receptor expression synergizes with receptor activation by WY-14,643 to induce the expression of the PPAR alpha target gene acyl-CoA oxidase. Together, these results show that regulation of the PPAR alpha expression levels efficiently modulates PPAR activator signaling and thus may affect downstream metabolic pathways involved in lipid homeostasis.
Resumo:
Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.
Resumo:
Spermiogenesis and the ultrastructure of the spermatozoon of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Linnaeus, 1758), have been studied by means of transmission electron microscopy. Spermiogenesis involves firstly the formation of a differentiation zone. It is characterized by the presence of two centrioles associated with striated rootlets, an intercentriolar body and an electron-dense material in the apical region of this zone. Later, two flagella develop from the centrioles, growing orthogonally in relation to the median cytoplasmic process. Flagella then undergo a rotation of 90° until they become parallel to the median cytoplasmic process, followed by the proximodistal fusion of the flagella with the median cytoplasmic process. The nucleus elongates and afterwards it migrates along the spermatid body. Spermiogenesis finishes with the appearance of the apical cone surrounded by the single helical crested body at the base of the spermatid. Finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of C. crassiceps is filiform and contains two axonemes of the 9 + '1' trepaxonematan pattern, a parallel nucleus, parallel cortical microtubules, and electron-dense granules of glycogen. The anterior extremity of the gamete exhibits a short electron-dense apical cone and one crested body, which turns once around the sperm cell. The first axoneme is surrounded by a ring of thick cortical microtubules that persist until the appearance of the second axoneme. Later, these thick cortical microtubules disappear and thus, the mature spermatozoon exhibits two bundles of thin cortical microtubules. The posterior extremity of the male gamete presents only the nucleus. Results are discussed and compared particularly with the available ultrastructural data on the former 'pseudophyllideans'. Two differences can be established between spermatozoa of Bothriocephalidea and Diphyllobothriidea, the type of spermatozoon (II vs I) and the presence/absence of the ring of cortical microtubules.
Resumo:
The murine immediate-early (IE) protein pp89 is a nonstructural virus-encoded phosphoprotein residing in the nucleus of infected cells, where it acts as transcriptional activator. Frequency analysis has shown that in BALB/c mice the majority of virus-specific CTL recognize IE antigens. The present study was performed to assess whether pp89 causes membrane antigen expression detected by IE-specific CTL. Site-directed mutagenesis has been used to delete the introns from gene ieI, encoding pp89, for subsequent integration of the continuous coding sequence into the vaccinia virus genome. After infection with the vaccinia recombinant, the authentic pp89 was expressed in cells that became susceptible to lysis by an IE-specific CTL clone. Priming of mice with the vaccinia recombinant sensitized polyclonal CTL that recognized MCMV-infected cells and transfected cells expressing pp89. Thus, a herpesviral IE polypeptide with essential function in viral transcriptional regulation can also serve as a dominant antigen for the specific CTL response of the host.
Resumo:
Stable protein-DNA complexes can be assembled in vitro at the 5' end of Xenopus laevis vitellogenin genes using extracts of nuclei from estrogen-induced frog liver and visualized by electron microscopy. Complexes at the three following sites can be identified on the gene B2: the transcription initiation site, the estrogen responsive element (ERE) and in the first intron. The complex at the transcription initiation site is stabilized by dinucleotides and thus represents a ternary transcription complex. The formation of the complexes at the two other sites is enhanced by estrogen and is reduced by tamoxifen, an antagonist of estrogen, while this latter effect is reversed by adding an excess of hormone. No sequence homology is apparent between the site containing the ERE and the binding site in intron I and functional tests in MCF-7 cells suggest that these two sites are not equivalent. Finally, we made use of previously characterized deletion mutants of the 5' flanking region of the gene B1, a close relative of the gene B2, to demonstrate that the 13-bp palindromic core element of the ERE is involved in the formation of the complexes observed upstream of the transcription initiation site.
Resumo:
We present a new phenomenological approach to nucleation, based on the combination of the extended modified liquid drop model and dynamical nucleation theory. The new model proposes a new cluster definition, which properly includes the effect of fluctuations, and it is consistent both thermodynamically and kinetically. The model is able to predict successfully the free energy of formation of the critical nucleus, using only macroscopic thermodynamic properties. It also accounts for the spinodal and provides excellent agreement with the result of recent simulations.
Resumo:
If regions of the anterior pituitary gland received systemic blood via a direct arterial blood supply these regions would escape hypothalamic regulation and thus be a sequela in endocrine disorders. Since, in the untreated rat, all of the blood supply to the anterior pituitary gland is via the hypophyseal portal vessels, we hypothesized that partial interruption of the portal vessels could provoke the establishment of a direct arterial blood supply (arteriogenesis). We utilized the injection of polystyrene microspheres (15 or 9 micron diameter) into the left ventricle of the heart to test this hypothesis. Microspheres are trapped in the first capillary plexus they reach since they are too large to traverse the capillaries. No microspheres reached the anterior pituitary gland of control rats, a finding consistent with the fact that the anterior pituitary gland receives all of its blood supply via the hypophyseal portal blood vessels. Microspheres were observed in the primary portal capillary plexus in the infundibulum (median eminence), infundibular stalk (pituitary stalk), and infundibular process (pars nervosa), the first capillary plexus which they reached. A lesion of the medial basal hypothalamus (MBH) which destroyed the long portal vessels did not result in arteriogenesis since few, if any, microspheres were observed in the anterior pituitary gland. We confirmed, using vascular casts, that these lesions resulted in the long-term destruction of the primary portal capillaries in the infundibulum and of the long portal vessels. In MBH-lesioned animals it appears that all of the blood supply of the anterior pituitary gland is via short portal vessels arising from the infundibular stem and process.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The development of chemoresistance represents a major obstacle in the successful treatment of cancers such as neuroblastoma (NB), a particularly aggressive childhood solid tumour. The mechanisms underlying the chemoresistant phenotype in NB were addressed by gene expression profiling of two doxorubicin (DoxR)-resistant vs sensitive parental cell lines. Not surprisingly, the MDR1 gene was included in the identified upregulated genes, although the highest overexpressed transcript in both cell lines was the frizzled-1 Wnt receptor (FZD1) gene, an essential component of the Wnt/beta-catenin pathway. FZD1 upregulation in resistant variants was shown to mediate sustained activation of the Wnt/beta-catenin pathway as revealed by nuclear beta-catenin translocation and target genes transactivation. Interestingly, specific micro-adapted short hairpin RNA (shRNAmir)-mediated FZD1 silencing induced parallel strong decrease in the expression of MDR1, another beta-catenin target gene, revealing a complex, Wnt/beta-catenin-mediated implication of FZD1 in chemoresistance. The significant restoration of drug sensitivity in FZD1-silenced cells confirmed the FZD1-associated chemoresistance. RNA samples from 21 patient tumours (diagnosis and postchemotherapy), showed a highly significant FZD1 and/or MDR1 overexpression after treatment, underlining a role for FZD1-mediated Wnt/beta-catenin pathway in clinical chemoresistance. Our data represent the first implication of the Wnt/beta-catenin pathway in NB chemoresistance and identify potential new targets to treat aggressive and resistant NB.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.
Resumo:
Evidence that glucagon-like peptide-1 (GLP-1) (7-36) amide functions as a novel neuropeptide prompted us to study the gene expression of its receptor in rat brain. Northern blot analysis showed transcripts of similar size in RINm5F cells, hypothalamus, and brain-stem. First-strand cDNA was prepared by using RNA from hypothalamus, brainstem, and R1Nm5F cells and subsequently amplified by PCR. Southern blot analysis of the PCR products showed a major 1.4-kb band in all these preparations. PCR products amplified from hypothalamus were cloned, and the nucleotide sequence of one strand was identical to that described in rat pancreatic islets. In situ hybridization studies showed specific labeling in both neurons and glia of the thalamus, hypothalamus, hippocampus, primary olfactory cortex, choroid plexus, and pituitary gland. In the hypothalamus, ventromedial nuclei cells were highly labeled. These findings indicate that GLP-1 receptors are actually synthesized in rat brain. In addition, the colocalization of GLP-1 receptors, glucokinase, and GLUT-2 in the same areas supports the idea that these cells play an important role in glucose sensing in the brain.
Resumo:
Adjuvant chemotherapy decisions in breast cancer are increasingly based on the pathologist's assessment of tumor proliferation. The Swiss Working Group of Gyneco- and Breast Pathologists has surveyed inter- and intraobserver consistency of Ki-67-based proliferative fraction in breast carcinomas. METHODS: Five pathologists evaluated MIB-1-labeling index (LI) in ten breast carcinomas (G1, G2, G3) by counting and eyeballing. In the same way, 15 pathologists all over Switzerland then assessed MIB-1-LI on three G2 carcinomas, in self-selected or pre-defined areas of the tumors, comparing centrally immunostained slides with slides immunostained in the different laboratoires. To study intra-observer variability, the same tumors were re-examined 4 months later. RESULTS: The Kappa values for the first series of ten carcinomas of various degrees of differentiation showed good to very good agreement for MIB-1-LI (Kappa 0.56-0.72). However, we found very high inter-observer variabilities (Kappa 0.04-0.14) in the read-outs of the G2 carcinomas. It was not possible to explain the inconsistencies exclusively by any of the following factors: (i) pathologists' divergent definitions of what counts as a positive nucleus (ii) the mode of assessment (counting vs. eyeballing), (iii) immunostaining technique, and (iv) the selection of the tumor area in which to count. Despite intensive confrontation of all participating pathologists with the problem, inter-observer agreement did not improve when the same slides were re-examined 4 months later (Kappa 0.01-0.04) and intra-observer agreement was likewise poor (Kappa 0.00-0.35). CONCLUSION: Assessment of mid-range Ki-67-LI suffers from high inter- and intra-observer variability. Oncologists should be aware of this caveat when using Ki-67-LI as a basis for treatment decisions in moderately differentiated breast carcinomas.