982 resultados para amorphous Ge20As55Se55 films


Relevância:

30.00% 30.00%

Publicador:

Resumo:

TbxFe1−x thin films deposited by sputtering on Mo were investigated structurally and magnetically. The microstructure consists of TbFe2 nanoparticles embedded in an amorphous matrix, and the Tb content can be correlated with an increase in the volume of these nanoparticles. Similar microstructure and behavior were found when TbFe2 was deposited on glass and on a Pt buffer layer. Nevertheless, thermal treatments promote a different effect, depending on the mechanical stiffness of the buffer layer. The layers deposited on Mo, a rigid material, show crystalline TbFe2 together with α-Tb phase upon thermal treatment. In contrast, TbFe2 does not crystallize properly on Pt, a material with a lower stiffness than Mo. Intermediate results were observed on the film deposited on glass. Experimental results show the impact of the buffer stiffness on the crystallization process. Moreover, the formation of α-Tb appears to be fundamental to crystallized TbFe2 on layers deposited on rigid buffers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended as high impedance films for the acoustic isolation of bulk acoustic wave devices operating in the GHz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed DC powers and substrate bias. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is obtained after estimating the mass density by X-ray reflectometry measurements and the longitudinal acoustic velocity by analyzing the longitudinal λ/2 resonance induced in a tantalum oxide film inserted between an acoustic reflector and an AlN-based resonator. A second measurement of the sound velocity is achieved through picosecond acoustic spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the structural and piezoelectric assessment of aluminum nitride (AlN) thin films deposited by pulsed-DC reactive sputtering on insulating substrates. We investigate the effect of different insulating seed layers on AlN properties (crystallinity, residual stress and piezoelectric activity). The seed layers investigated, silicon nitride (Si3N4), silicon dioxide (SiO2), amorphous tantalum oxide (Ta2O5), and amorphous or nano-crystalline titanium oxide (TiO2) are deposited on glass plates to a thickness lower than 100 nm. Before AlN films deposition, their surface is pre-treated with a soft ionic cleaning, either with argon or nitrogen ions. Only AlN films grown of TiO2 seed layers exhibit a significant piezoelectric activity to be used in acoustic device applications. Pure c-axis oriented films, with FWHM of rocking curve of 6º, stress below 500 MPa, and electromechanical coupling factors measured in SAW devices of 1.25% are obtained. The best AlN films are achieved on amorphous TiO2 seed layers deposited at high target power and low sputtering pressure. On the other hand, AlN films deposited on Si3N4, SiO2 and TaOx exhibit a mixed orientation, high stress and very low piezoelectric activity, which invalidate their use in acoustic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon thin films were deposited using a high pressure sputtering (HPS) system. In this work, we have studied the composition and optical properties of the films (band-gap, absorption coefficient), and their dependence with the deposition parameters. For films deposited at high pressure (1 mbar), composition measurements show a critical dependence of the purity of the films with the RF power. Films manufactured with RF-power above 80W exhibit good properties for future application, similar to the films deposited by CVD (Chemical Vapor Deposition) for hydrogenated amorphous silicon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. InxCd1-xO films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no apparent phase separation was detected. Films obtained by compression moulding were stored during 3 months under ambient controlled conditions and thermal, mechanical, structural and oxygen barrier properties were studied in order to evaluate the stability of the PLA–OLA films over time. Blends with 20 and 25 wt% OLA remained stable and compatible with PLA within the ageing period. Besides, PLA–20 wt% OLA formulation was the only one which maintained its amorphous state with adequate thermal, mechanical and oxygen barrier properties for flexible films manufacturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-layer hydrogen storage thin films with Mg and MmNi(3.5)(CoAlMn)(1.5) (here Mm denotes La-rich mischmetal) as alternative layers were prepared by direct current magnetron sputtering. Transmission electron microscopy investigation shows that the microstructure of the MmNi(3.5)(CoAlMn)(1.5) and Mg layers are significantly different although their deposition conditions are the same. The MmNi(3.5)(CoAlMn)(1.5) layer is composed of two regions: one is an amorphous region approximately 4 nm thick at the bottom of the layer and the other is a nanocrystalline region on top of the amorphous region. The Mg layer is also composed of two regions: one is a randomly orientated nanocrystalline region 50 nm thick at the bottom of the layer and the other is a columnar crystallite region on top of the nanocrystalline region. These Mg columnar crystallites have their [001] directions parallel to the growth direction and the average lateral size of these columnar crystallites is about 100 nm. A growth mechanism of the multi-layer thin films is discussed based on the experiment results. Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructure of MmNi(3.5)(CoAlMn)(1.5)/Mg (here Mm denotes La-rich mischmetal) multi-layer hydrogen storage thin films prepared by direct current magnetron sputtering was investigated by cross-sectional transmission electron microscopy (XTEM). It was shown that the MMM5 layers are composed of two regions: an amorphous region with a thickness of similar to 4nm at the bottom of the layers and a randomly orientated nanocrystallite region on the top of the amorphous region and the Mg layers consist of typical columnar crystallite with their [001] direction nearly parallel to the growth direction. The mechanism for the formation of the above microstructure characteristics in the multi-layer thin films has been proposed. Based on the microstructure feature of the multi-layer films, mechanism for the apparent improvement of hydrogen absorption/desorption kinetics was discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and construction of a sputtering system for the deposition of barium titanate thin films is described. The growth and structure of barium titanate films deposited on a variety of substrates including amorphous carbon fi1ms, potassium bromide single crystals, and polycrystalline gold films has been studied. Films deposited on all substrates at room temperature were amorphous. Polycrystalline titanate films were formed on polycrystalline and amorphous substrates at temperatures above 450°C while films with a pronounced texture could be expitaxially deposited on single crystal potassium bromide above a temperature of only 200°C. Results of dielectric measurements made on the films are reported. Amorphous films were highly insulating (resistivities ~1014 ohm.cm with dielectric constants of between 10 and 20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films of amorphous silicon (a-Si) were prepared by r.f. sputtering in a Ne plasma without the addition of hydrogen or a halogen. The d.c. dark electrical conductivity, he optical gap and the photoconductivity of the films were investigated for a range of preparation conditions, the sputtering gas pressure, P, the target-substrate spacing, d, the self-bias voltage, Vsb, on the target and the substrate temperature, Ts. The dependence of the electrical and optical properties on these conditions showed that various combinations of P, d and Vsb, at a constant Ts, giving the same product (Pd/V sb) result in films with similar properties, provided that P, d and Vsb remain vithin a certain range. Variation of Pd/Vsb between about 0.2 and 0.8 rrTorr.cm!V varied the dark conductivity over about 4 orders of magnitude, the optical gap by 0.5 eV and the photoconductivity over 4-5 orders of magnitude. This is attributed to controlling the density-of-states distribution in the mobility gap. The temperature-dependence of photoconductivity and the photoresponse of undoped films are in support of this conclusion. Films prepared at relatively high (Pd/Vsb) values and Ts=300 ºc: exhibited low dark-conductivity and high thermal activation energy, optical gap and photoresponse, characteristic properties of a 'low density-of-states material. P-type doping with group-Ill elements (Al, B and Ga) by sputtering from a composite target or from a predoped target (B-.doped) was investigated. The systematic variation of room-temperature conductivity over many orders of magnitude and a Fermi-level shift of about 0.7 eV towards the valence-band edge suggest that substitutional doping had taken place. The effects of preparation conditions on doping efficiency were also investigated. The post-deposition annealing of undoped and doped films were studied for a temperature range from 250 ºC to 470 ºC. It was shown that annealing enhanced the doping efficiency considerably, although it had little effect on the basic material (a-Si) prepared at the optimum conditions (Pd/Vsb=0.8 mTorr.cm/V and Ts=300 $ºC). Preliminary experiments on devices imply potential applications of the present material, such as p-n and MS junctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications. In the past, metals like Fe, Ni and Co were sought after for various applications though iron was in the forefront because of its cost effectiveness and abundance. Later, alloys based on Fe and Ni were increasingly employed. They were used in magnetic heads and in inductors. Ferrites entered the arena and subsequently most of the newer applications were based on ferrites, a ferrimagnetic material, whose composition can be tuned to tailor the magnetic properties. In the late 1950s a new class of magnetic material emerged on the magnetic horizon and they were fondly known as metallic glasses. They are well known for their soft magnetic properties. They were synthesized in the form of melt spun ribbons and are amorphous in nature and they are projected to replace the crystalline counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous silicon thin films were deposited using the high pressure sputtering (HPS) technique to study the influence of deposition parameters on film composition, presence of impurities, atomic bonding characteristics and optical properties. An optical emission spectroscopy (OES) system has been used to identify the different species present in the plasma in order to obtain appropriate conditions to deposit high purity films. Composition measurements in agreement with the OES information showed impurities which critically depend on the deposition rate and on the gas pressure. We prove that films deposited at the highest RF power and 3.4 × 10^−2 mbar, exhibit properties as good as the ones of the films deposited by other more standard techniques.