879 resultados para allosteric inhibition
Resumo:
Angiotensin-converting enzyme (ACE) plays a critical role in rennin-angiotensin system. Recently, natural products isolated from herbal medicines revealed inhibitory effects against ACE which suggested their potential activities in regulating blood pressure. In this study, ACE inhibition (ACEI) of 21 phenylethanoid glycosides and related phenolic compounds were investigated by measuring the production of HA a rapid, sensitive, accurate and specific ultra-performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC-MS/MS) method. The test compounds showed different inhibitory potencies on ACE ranging from 5.29 to 95.01% at 50 mM, and the compounds with ACEI higher than 50% were selected for further IC50 determination. The IC50 values were from 0.53 ± 0.04 to 15.035 ± 0.036 mM. The structure-inhibition relationship were then explored and the result showed that cinnamoyl groups played an essential role in ACEI of phenylethanoid glycosides. Furthermore, the sub-structures of increasing ACEI for phenylethanoid glycosides is more hydroxyls and less steric hindrance to chelate the active site Zn2+ of ACE. In summary, our results suggested that phenylethanoid glycosides are a widely available source of anti-hypertensive natural products and the information provided from structure-inhibition relationship study could aid the design of structurally modified phenylethanoid glycosides as anti-hypertensive drugs.
Resumo:
DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.
Resumo:
Introduction: Calcific tendonitis of rotator cuff is observed on plainradiographs in 10% of adults, but remains asymptomatic in half thesecases. Sometimes, these calcifications induce acute flares withmassive inflammation similar to gout or CPPD crisis. Analgesics/anti-inflammatory medications are usually not sufficient to controlssymptoms in these situations. Local steroid infiltration with or withoutremoval of the calcific deposition with a needle aspiration may beuseful. A new approach could be IL-1 inhibitors. Indeed, basic calciumphosphate crystals are capable of stimulating the release of activeIL-1β in vitro. These crystals trigger IL-1β release, in an analogousmanner to MSU crystals in acute gout, suggesting that IL-1β blockademay be clinically useful.Case presentation: This report describes a 70-year old woman withacute rest pain of the right shoulder since 48 hours. On examination,we found massive limitations of active and passive movements. Thepatient evaluated, on the visual scale, her symptoms at 10/10 the nightand 5/10 the day. The radiography and showed a rounded, 8 mmcalcification in the subscapularis tendon. The ultrasound aspectrevealed a heterogeneous calcification partially non solid, surroundedby massive inflammation on Doppler. C-reactive protein anderythrocyte sedimentation rate were high (74 mg/ml, 54 mm/hour).The patient received subcutaneous injections of anakinra: 100 mgdaily for 3 days (D1-D3). We evaluated the patient in our consult at dayD1, D2, D3, D7, D16 and by phone at D70.This treatment rapidly relieved the inflammatory symptoms (within afew hours with no relapse). The mobility of the shoulder, the biologicsparameters improved and the size of the calcification as well thedegree of inflammation regressed on ultrasound after 3 days.Conclusion: This is the first report of a woman with an acute flareinduced by calcific tendonitis who received anakinra. IL-1 inhibitionmay be a therapeutic target in calcific tendonitis. To analyse thisresponse more precisely and elaborate definitive conclusions, aprospective pilot study is on-going in our ambulatory institute.
Resumo:
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. AIM OF THE STUDY: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O₂) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. CONCLUSIONS: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.
Resumo:
Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.
Resumo:
TAT-RasGAP317-326, a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP317-326. In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP317-326 to promote cell adherence and inhibit migration. These results show that TAT-RasGAP317-326, besides its ability to favor tumor cell death, hampers cell migration and invasion.
Resumo:
The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.
Resumo:
Chronic intake of non steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced risk of developing gastrointestinal tumors, in particular colon cancer. Increasing evidence indicates that NSAID exert tumor-suppressive activity on pre-malignant lesions (polyps) in humans and on established experimental tumors in mice. Some of the tumor-suppressive effects of NSAIDs depend on the inhibition of cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxane, which is highly expressed in inflammation and cancer. Recent findings indicate that NSAIDs exert their anti-tumor effects by suppressing tumor angiogenesis. The availability of COX-2-specific NSAIDs opens the possibility of using this drug class as anti-angiogenic agents in combination with chemotheapy or radiotherapy for the treatment of human cancer. Here we will briefly review recent advances in the understanding of the mechanism by which NSAIDs suppress tumor angiogenesis and discuss their potential clinical application as anti-cancer agents.
Resumo:
The paracaspase MALT1 has a central role in the activation of lymphocytes and other immune cells including myeloid cells, mast cells and NK cells. MALT1 activity is required not only for the immune response, but also for the development of natural Treg cells that keep the immune response in check. Exaggerated MALT1 activity has been associated with the development of lymphoid malignancies, and recently developed MALT1 inhibitors show promising anti-tumor effects in xenograft models of diffuse large B cell lymphoma. In this review, we provide an overview of the present understanding of MALT1's function, and discuss possibilities for its therapeutic targeting based on recently developed inhibitors and animal models.
Resumo:
The relevance of attentional measures to cognitive and social adaptive behaviour was examined in an adolescent sample. Unlike previous research, the influence of both inhibitory and facilitory aspects of attention were studied. In addition, contributions made by these attentional processes were compared with traditional psychometric measures of cognitive functioning. Data were gathered from 36 grade 10 and 1 1 high school students (20 male and 16 female students) with a variety of learning and attentional difficulties. Data collection was conducted in the course of two testing sessions. In the first session, students completed questionnaires regarding their medical history, and everyday behaviours (the Brock Adaptive Functioning Questionnaire), along with non-verbal problem solving tasks and motor speed tasks. In the second session, students performed working memory measures and computer-administered tasks assessing inhibitory and facilitory aspects of attention. Grades and teacher-rated measures of cognitive and social impulsivity were also gathered. Results indicate that attentional control has both cognitive and social/emotional implications. Performance on negative priming and facilitation trials from the Flanker task predicted grades in core courses, social functioning measures, and cognitive and social impulsivity ratings. However, beneficial effects for academic and social functioning associated with inhibition were less prevalent in those demonstrating a greater ability to respond to facilitory cues. There was also some evidence that high levels of facilitation were less beneficial to academic performance, and female students were more likely to exceed optimal levels of facilitory processing. Furthermore, lower negative priming was ''S'K 'i\':y-: -'*' - r " j«v ; ''*.' iij^y Inhibition, Facilitation and Social Competence 3 associated with classroom-rated distraction and hyperactivity, but the relationship between inhibition and social aspects of impulsivity was stronger for adolescents with learning or reading problems, and the relationship between inhibition and cognitive impulsivity was stronger for male students. In most cases, attentional measures were predictive of performance outcomes independent of traditional psychometric measures of cognitive functioning. >,, These findings provide support for neuropsychological models linking inhibition to control of interference and arousal, and emphasize the fundamental role of attention in everyday adolescent activities. The findings also warrant further investigation into the ways which inhibitory and facilitory attentional processes interact, and the contextdependent nature of attentional control.associated with classroom-rated distraction and hyperactivity, but the relationship between inhibition and social aspects of impulsivity was stronger for adolescents with learning or reading problems, and the relationship between inhibition and cognitive impulsivity was stronger for male students. In most cases, attentional measures were predictive of performance outcomes independent of traditional psychometric measures of cognitive functioning. >,, These findings provide support for neuropsychological models linking inhibition to control of interference and arousal, and emphasize the fundamental role of attention in everyday adolescent activities. The findings also warrant further investigation into the ways which inhibitory and facilitory attentional processes interact, and the contextdependent nature of attentional control.
Resumo:
Growth rates of etiolated Avena sativa coleoptiles in pH 7.0 buffered medium are stimulated in a synergistic manner by IAA and 320 ~l/l carbon dioxide. The suggestion that carbon dioxide stimulated growth involves dark fixation is supported by the ability of 1 mM malate to replace carbon dioxide, with neither factor able to stimulate growth in the presence of the other (Bown, Dymock and Aung, 1974). The regulation of Avena coleoptile growth by ethylene has been investigated in the light of this data and the well documented antagonism between carbon dioxide and ethylene in the regulation of developmental processes. The influence of various permutations of ethylene, IAA, carbon dioxide and malate on the rates of growth, l4c-bicarbonate incorporation, l4C-bicarbonate fixation, and malate decarboxylation have been investigated. In the presence of 320 ~l/l carbon dioxide, 10.8 ~l/l ethylene inhibited growth both in the absence and presence of 20 ~M IAA with inhibition times, of 8-10 and 12-13 minutes respectively. In contrast ethylene inhibition of growth was not significant in the absence of growth stimulation by CO2 or 1 mM malate, and the normal growth increases in response to CO2 and malate were blocked by the simultaneous application of ethylene. The rates of incorporation and dark fixation of l4C-bicerbonate were not measurably. influenced by ethylene, IAA or malate, either prior to or during the changes in growth ,ates induced by these agents. The data does not support the hypothesis that ethylene inhibition of growth results from an inhibition of dark fixation, but suggests that ethylene may inhibit a process which is subsequent to fixation.
Resumo:
The hypothesis that rapid y-aminobutyric acid (GABA) accumulation is a plant defense against phytophagous insects was investigated. Simulation of mechanical damage resulting from phytophagous insect activity increased soybean (Glycine max L.) leaf GABA 10- to 25-fold within 1 to 4 min. Pulverizing leaf tissue resulted in a value of 2. 15 (±O. 11 SE) ~mol GABA per gram fresh weight. Increasing the GABA levels in a synthetic diet from 1.6 to 2.6 Jlffiol GABA per gram fresh weight reduced the growth rates, developmental rates, total biomass (50% reduction), and survival rates (30% reduction) of cultured Oblique banded leaf-roller (OBLR) (Choristonellra rosacealla Harris) larvae. In field experiments OBLR larvae were found predominantly on young terminal leaves which have a reduced capacity to produce GABA in response to mechanical damage. Glutamate decarboxylase (GAD) is a cytosolic enzyme which catalyses the decarboxylation of L-Glu to GABA. GAD is a calmodulin binding enzyme whose activity is stimulated dramatically by increased cytosolic H+ or Ca2 + ion concentrations. Phytophagous insect activity will disrupt the cellular compartmentation of H+ and Ca2 +, activate GAD and subsequent GABA accumulation. In animals GABA is a major inhibitory neurotransmitter. The possible mechanisms resulting in GABA inhibited growth and development of insects are discussed.