956 resultados para air temperature and relative humidity
Resumo:
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 1C cooler, with a maximum inferred cooling of 3.7 1C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (o20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (o5 1C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.
Resumo:
This paper presents the design and implementation of a novel optical fiber temperature compensated relative humidity (RH) sensor device, based on fiber Bragg gratings (FBGs) and developed specifically for monitoring water ingress leading to the deterioration of building stone. The performance of the sensor thus created, together with that of conventional sensors, was first assessed in the laboratory where they were characterized under experimental conditions of controlled wetting and drying cycles of limestone blocks, before being employed “in-the-field” to monitor actual building stone in a specially built wall. Although a new construction, this was built specifically using conservation methods similar to those employed in past centuries, to allow an accurate simulation of processes occurring with wetting and drying in the historic walls in the University of Oxford.
Resumo:
The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.
Resumo:
Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 18 de Dezembro de 2013, Universidade dos Açores.
Resumo:
Nos últimos anos tem-se assistido à introdução de novos dispositivos de medição da poluição do ar baseados na utilização de sensores de baixo custo. A utilização menos complexa destes sistemas, possibilita a obtenção de dados com elevada resolução temporal e espacial, abrindo novas oportunidades para diferentes metodologias de estudos de monitorização da poluição do ar. Apesar de apresentarem capacidades analíticas distantes dos métodos de referência, a utilização destes sensores tem sido sugerida e incentivada pela União Europeia no âmbito das medições indicativas previstas na Diretiva 2008/50/CE, com uma incerteza expandida máxima de 25%. O trabalho desenvolvido no âmbito da disciplina de Projeto consistiu na escolha, caracterização e utilização em medições reais de um sensor de qualidade do ar, integrado num equipamento protótipo desenvolvido com esse fim, visando obtenção uma estimativa da incerteza de medição associada à utilização deste dispositivo através da aplicação da metodologia de demonstração de equivalência de métodos de medição de qualidade do ar definida pela União Europeia. A pesquisa bibliográfica realizada permitiu constatar que o monóxido de carbono é neste momento o parâmetro de qualidade do ar que permite ser medido de forma mais exata através da utilização de sensores, nomeadamente o sensor eletroquímico da marca Alphasense, modelo COB4, amplamente utilizado em projetos de desenvolvimento neste cotexto de monitorização ambiental. O sensor foi integrado num sistema de medição com o objetivo de poder ser utlizado em condições de autonomia de fornecimento de energia elétrica, aquisição interna dos dados, tendo em consideração ser o mais pequeno possível e de baixo custo. Foi utlizado um sistema baseado na placa Arduino Uno com gravação de dados em cartão de memória SD, baterias e painel solar, permitindo para além do registo das tensões elétricas do sensor, a obtenção dos valores de temperatura, humidade relativa e pressão atmosférica, com um custo global a rondar os 300 euros. Numa primeira fase foram executados um conjunto de testes laboratoriais que permitiram a determinação de várias características de desempenho em dois sensores iguais: tempo de resposta, a equação modelo do sensor, avaliação da repetibilidade, desvio de curto e longo termo, interferência da temperatura e histerese. Os resultados demonstraram um comportamento dos sensores muito linear, com um tempo de resposta inferior a um minuto e com uma equação modelo do sensor dependente da variação da temperatura. A estimativa da incerteza expandida laboratorial ficou, para ambos os sensores, abaixo dos 10%. Após a realização de duas campanhas reais de medição de CO em que os valores foram muito baixos, foi realizada uma campanha de quinze dias num parque de estacionamento subterrâneo que permitiu a obtenção de concentrações suficientemente elevadas e a comparação dos resultados dos sensores com o método de referência em toda a gama de medição (0 a 12 mol.mol-1). Os valores de concentração obtidos pelos dois sensores demonstraram uma excelente correlação com o método de referência (r2≥0,998), obtendo-se resultados para a estimativa da incerteza expandida de campo inferiores aos obtidos para a incerteza laboratorial, cumprindo o objetivo de qualidade de dados definido para as medições indicativas de incerteza expandida máxima de 25%. Os resultados observados durante o trabalho realizado permitiram confirmar o bom desempenho que este tipo de sensor pode ter no âmbito de medições de poluição do ar com um caracter mais indicativo.
Resumo:
The effect of ambient gas on the dynamics of the plasma generated by laser ablation of a carbon target using 1.06 μm radiation from a Q-switched Nd:YAG laser has been investigated using a spectroscopic technique. The emission characteristics of the carbon plasma produced in argon, helium and air atmospheres are found to depend strongly on the nature and pressure of the surrounding gas. It has been observed that hotter and denser plasmas are formed in an argon atmosphere rather than in helium or air as an ambient.
Resumo:
The thesis presented here unveils an experimental study of the hydrodynamic characteristics of swirling fluidized bed viz. pressure drop across the distributor and the bed, minimum fluidizing velocity, bed behaviour and angle of air injection. In swirling fluidized bed the air is admitted to the bed at an angle 'Ѳ' to the horizontal. The vertical component of the velocity v sin Ѳ causes fluidization and the horizontal component v cos Ѳ contributes to swirl motion of the bed material.The study was conducted using spherical particles having sizes 3.2 mm, 5.5 mm & 7.4 mm as the bed materials. Each of these particles was made from high density polyethylene, nylon and acetal having relative densities of 0.93, 1.05 and 1.47 respectively.The experiments were conducted using conidour type distributors having four rows of slits. Altogether four distributors having angles of air injection (Φ)- 0°, 5°, 10° & 15° were designed and fabricated for the study. The total number of slits in each distributor was 144. The area of opening was 6220 mm2 making the percentage area of opening to 9.17. But the percentage useful area of opening of the distributor was 96.The experiments on the variation of distributor pressure drop with superficial velocity revealed that the distributor pressure drop decreases with angle of air injection. Investigations related to bed hydrodynamics were conducted using 2.5 kg of bed material. The bed pressure drop measurements were made along the radial direction of the distributor at distances of 60 mm, 90 mm, 120 mm & 150 mm from the centre of the distributor. It was noticed that after attaining minimum fluidizing velocity, the bed pressure drop increases along the radial direction of the distributor. But at a radial distance of 90 mm from the distributor centre, after attaining minimum fluidizing velocity the bed pressure drop remains almost constant. It was also observed that the bed pressure drop varies inversely with particle size as well as particle density.An attempt was made to determine the effect of various parameters on minimum fluidizing velocity. It was noticed that the minimum fluidizing velocity varies directly with angle of air injection (Φ), particle size and particle density.The study on the bed behaviour showed that the superficial velocity required for initiating various bed phenomena (such as swirl motion and separation of particles from the cone at the centre) increase with increase in particle size as well as particle density. It was also observed that the particle size and particle density directly influence the superficial velocity required for various regimes of bed behaviour such as linear variation of bed pressure drop, constant bed pressure drop and sudden increase or decrease in bed pressure drop.Experiments were also performed to study the effect of angle of air injection (Φ). It was noticed that the bed pressure drop decreases with angle of air injection. It was also noticed that the angle of air injection directly influence the superficial velocity required for initiating various bed phenomena as well as the various regimes of bed behaviour.
Resumo:
Three different drying methods, a forced convection double-pass solar drier (DPSD), typical cabinet type natural convection solar drier (CD) and traditional open-sun drying (OSD) were used for draying of bamboo shoots in central Vietnam. During drying the operational parameters such as drying temperature, relative humidity, air velocity, insolation and water evaporation have been recorded hourly. The mean drying temperatures and relative humidity in the drying chamber were 55.2°C, 23.7%; 47.5°C, 37,6%; 36.2°C, 47.8% in DPSD, CD and OSD, respectively. The mean global radiation during all experimental runs was 670 Wm^−2. The result also shows that fastest drying process was occurred in DPSD where the falling-rate period was achieved after 7 hours, in change to OSD where it took 16 hours. The overall drying efficiency was 23.11%, 15.83% and 9.73% in case of DPSD, CD and OSD, respectively. Although the construction cost of DPSD was significantly higher than in CD, the drying costs per one kilogram of bamboo shoots were by 42.8% lower in case of DPSD as compared to CD. Double-pass solar drier was found to be technically and economically suitable for drying of bamboo shoots under the specific conditions in central Vietnam and in all cases, the use of this drier led to considerable reduction in drying time in comparison to traditional open-sun drying.
Resumo:
Idealized, convection-resolving simulations of moist orographic flows are conducted to investigate the influence of temperature and moist stability on the drying ratio (DR), defined as the fraction of the impinging water mass removed as orographic precipitation. In flow past a long ridge, where most of the air rises over the barrier rather than detouring around it, DR decreases as the surface temperature (Ts) increases, even as the orographic cap cloud becomes statically unstable at higher Ts and develops embedded convection. This behaviour is explained by a few physical principles: (1) the Clausius–Clapeyron equation dictates that the normalized condensation rate decreases as the flow gets warmer, (2) the replacement of ice-phase precipitation growth with warm-rain processes decreases the efficiency by which condensate is converted to precipitation, thereby lowering precipitation efficiency, and (3) embedded convection acts more to vertically redistribute moisture than to enhance precipitation. Over an isolated mountain, the effects of (1) and (2) are counteracted by moisture deflection around the barrier, which is stronger in the colder, more stable flows.
Resumo:
Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters average soil thermal conductivity, specific beat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981-August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R-2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R-2 -values of the testing period were between 0.87 and 0.94 at a depth of 20cm. and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means, that the model is suitable for addition to catchment scale models.
Resumo:
Composites of wind speeds, equivalent potential temperature, mean sea level pressure, vertical velocity, and relative humidity have been produced for the 100 most intense extratropical cyclones in the Northern Hemisphere winter for the 40-yr ECMWF Re-Analysis (ERA-40) and the high resolution global environment model (HiGEM). Features of conceptual models of cyclone structure—the warm conveyor belt, cold conveyor belt, and dry intrusion—have been identified in the composites from ERA-40 and compared to HiGEM. Such features can be identified in the composite fields despite the smoothing that occurs in the compositing process. The surface features and the three-dimensional structure of the cyclones in HiGEM compare very well with those from ERA-40. The warm conveyor belt is identified in the temperature and wind fields as a mass of warm air undergoing moist isentropic uplift and is very similar in ERA-40 and HiGEM. The rate of ascent is lower in HiGEM, associated with a shallower slope of the moist isentropes in the warm sector. There are also differences in the relative humidity fields in the warm conveyor belt. In ERA-40, the high values of relative humidity are strongly associated with the moist isentropic uplift, whereas in HiGEM these are not so strongly associated. The cold conveyor belt is identified as rearward flowing air that undercuts the warm conveyor belt and produces a low-level jet, and is very similar in HiGEM and ERA-40. The dry intrusion is identified in the 500-hPa vertical velocity and relative humidity. The structure of the dry intrusion compares well between HiGEM and ERA-40 but the descent is weaker in HiGEM because of weaker along-isentrope flow behind the composite cyclone. HiGEM’s ability to represent the key features of extratropical cyclone structure can give confidence in future predictions from this model.
Resumo:
Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management
Resumo:
Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The method of distributing the outdoor air in classrooms has a major impact on indoor air quality and thermal comfort of pupils. In a previous study, ([11] Karimipanah T, Sandberg M, Awbi HB. A comparative study of different air distribution systems in a classroom. In: Proceedings of Roomvent 2000, vol. II, Reading, UK, 2000. p. 1013-18; [13] Karimipanah T, Sandberg M, Awbi HB, Blomqvist C. Effectiveness of confluent jets ventilation system for classrooms. In: Idoor Air 2005, Beijing, China, 2005 (to be presented).) presented results for four and two types of air distribution systems tested in a purpose built classroom with simulated occupancy as well as computational fluid dynamics (CFD) modelling. In this paper, the same experimental setup has been used to investigate the indoor environment in the classroom using confluent jet ventilation, see also ([12]Cho YJ, Awbi HB, Karimipanah T. The characteristics of wall confluent jets for ventilated enclosures. In: Proceedings of Roomvent 2004, Coimbra, Portugal, 2004.) Measurements of air speed, air temperature and tracer gas concentrations have been carried out for different thermal conditions. In addition, 56 cases of CFD simulations have been carried to provide additional information on the indoor air quality and comfort conditions throughout the classroom, such as ventilation effectiveness, air exchange effectiveness, effect of flow rate, effect of radiation, effect of supply temperature, etc., and these are compared with measured data.
Resumo:
This article addresses the need for providing good standards of indoor air quality (IAQ) in buildings from the view point of health, well-being and productivity of building occupants. It briefly outlines the role of ventilation in achieving the required IAQ targets and discusses the performance of different types of ventilation systems in use. As a result of new energy efficiency directives and legislations in Europe and elsewhere, the ventilation energy component of HVAC systems has increased in relative terms and this article introduces a method for evaluating the performance air distribution systems that is based on ventilation and energy effectiveness. A range of ventilation systems are discussed, including mechanical and natural ventilation, and results for more recently developed mechanical air distribution systems are compared with conventional systems. The article provides an assessment and comparison of some of these systems with reference to ventilation performance and energy efficiency