905 resultados para acoustic sensing
Resumo:
Multilayered nanostructured films have been widely investigated for electrochemical applications as modified electrodes, including the layer-by-layer (LbL) films where properties such as thickness and film architecture can be controlled at the molecular level. In this study, we investigate the electrochemical features of LbL films of poly (o-methoxyaniline; POMA) and tetrasulfonated phthalocyanines containing nickel (NiTsPc) or copper (CuTsPc). The films displayed well-defined electroactivity, with redox pairs at 156 and 347 mV vs SCE, characteristic of POMA, which allowed their use as modified electrodes for detecting dopamine and ascorbic acid at concentrations as low as 10(-5) M.
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The mechanisms of material removal and the interactions among scratches performed in ceramic materials were investigated using acoustic emission signals, and scanning electron microscopy, in scratching experiments. Several testing conditions were used to produce different types of removing mechanism on a glass as well as on a polycrystalline alumina sample composed by heterogeneous grain size. It is known that the material removing process on a polycrystalline ceramic involves intergranular microfracture and grain dislodgement, unlike the chipping produced by the extension of lateral cracks in non-granular materials, such as glass. Distinct settings for velocities, loads, and two types of diamond indenter were tested. The material removal was carried out by three different methods of scratching: single passes, repeated overlapping passes, and parallel scratches. As a general result, there was a clear relationship between the acoustic emission signals and the damage intensity occurred in the material removal. More specifically, there were differences in the acoustic emission signal levels in the scratches made on the alumina and on the glass owing to the material removal mechanisms associated with the structure of these materials. A gradual increase in the acoustic emission levels was observed when the number of repeated passes was increased as a result of the damage accumulation process followed by severe material removal. It was also noticed that the acoustic emission signals were capable of reflecting the interactions between two parallel scratches.
Resumo:
Nanostructured films of lignin (macromolecule extracted from sugar cane bagasse), polypyrrole (conducting polymer) and bis butylimido perylene (organic dye) were used in the detection of trace levels of fluorine (from H2SiF6), chlorine (from NaCIO), Pb+2, Cu+2, and Cd+2 in aqueous solutions. Langmuir monolayers on ultrapure water were characterised by surface pressure-mean molecular area (II-A) isotherms. Langmuir-Blodgett (LB) films were transferred onto gold interdigitated electrodes and used as individual sensing units of an electronic tongue system. Impedance spectroscopy measurements were taken with the sensor immersed into aqueous solutions containing the ions described above in different molar concentrations. Fourier transform infrared absorption (FTIR) was employed to identify possible interactions between the LB films and the analytes in solution, and no significant changes could be observed in the FTIR spectra of BuPTCD and Ppy. Therefore, the results for lignin point to an interaction involving the electronic cloud of the phenyl groups with the metallic ions.
Resumo:
The complex dynamic Young's modulus of ceramic Nd2-xCexCuO4 with x = 0, 0.05 and 0.20 has been measured from 1.5 to 100 K at frequencies of 1 - 10 kHz. In the undoped sample the modulus starts decreasing below similar to 20 K, instead of approaching a constant value as in a normal solid. The modulus minimum has been interpreted in terms of paraelastic contribution from the relaxation of the Nd3+ 4f electrons between the levels of the ground state doublet, which is split by the interaction with the antiferromagnetically ordered Cu sublattice. The value of the splitting is found to be 0.34 meV, in excellent agreement with inelastic neutron scattering, infrared and specific heat experiments. With doping, the anomaly shifts to lower temperature and decreases in amplitude, consistently with a reduction of the local field from the Cu sublattice. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The purpose of this work was to study fragmentation of forest formations (mesophytic forest, riparian woodland and savannah vegetation (cerrado)) in a 15,774-ha study area located in the Municipal District of Botucatu in Southeastern Brazil (São Paulo State). A land use and land cover map was made from a color composition of a Landsat-5 thematic mapper (TM) image. The edge effect caused by habitat fragmentation was assessed by overlaying, on a geographic information system (GIS), the land use and land cover data with the spectral ratio. The degree of habitat fragmentation was analyzed by deriving: 1. mean patch area and perimeter; 2. patch number and density; 3. perimeter-area ratio, fractal dimension (D), and shape diversity index (SI); and 4. distance between patches and dispersion index (R). In addition, the following relationships were modeled: 1. distribution of natural vegetation patch sizes; 2. perimeter-area relationship and the number and area of natural vegetation patches; 3. edge effect caused by habitat fragmentation, the values of R indicated that savannah patches (R = 0.86) were aggregated while patches of natural vegetation as a whole (R = 1.02) were randomly dispersed in the landscape. There was a high frequency of small patches in the landscape whereas large patches were rare. In the perimeter-area relationship, there was no sign of scale distinction in the patch shapes, In the patch number-landscape area relationship, D, though apparently scale-dependent, tends to be constant as area increases. This phenomenon was correlated with the tendency to reach a constant density as the working scale was increased, on the edge effect analysis, the edge-center distance was properly estimated by a model in which the edge-center distance was considered a function of the to;al patch area and the SI. (C) 1997 Elsevier B.V. B.V.
Resumo:
Nanostructured polyaniline-modified electrodes were fabricated via the electrostatic layer-by-layer (LbL) technique where polyaniline (PANI) was assembled with one of three tetrasulfonated metallic phthalocyanines, viz. iron (FeTsPc), nickel (NiTsPc) and copper (CuTsPc). The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the 800 run absorption band due to PANI. Infrared spectroscopy in the transmission mode suggested specific interactions between PANI and the phthalocyanines, such as those between SO3- groups from the phthalocyanines and the protonated NH group from PANI. The films were employed to detect dopamine (DA) using cyclic voltammetry. In the presence of dopamine the PANI-based LbL films showed additional redox peaks at ca. 230 and 190 mV the oxidation peak increased linearly with the concentration of DA in the electrolytic solution. Films comprising PANI/FeTsPc were able to distinguish between DA and ascorbic acid (AA), which acts as a natural interferent in biological fluids. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We studied the signaling, territorial, and courtship behaviors of the diurnal frog Hylodes asper. Visual and acoustic communication were used during intraspecific interactions involving males, females. and subadults. Hylodes aspcr has a complex visual communication system, of which foot-flagging is the most distinctive display observed in the repertoire of visual signals. The splash zone produced by the waterfalls and torrents creates a high, nearly constant, humidity near the streams, reducing the risk of desiccation which enables the diurnal activity of H. asper. Although the ambient sound pressure levels (SPL), measured at the calling sites, are similar to the SPL of the advertisement calls, the high-pitched calls of H, asper, are spectrally different from the noise produced by the water current. Thus. The ambient noise produced by the water current may not interfere significantly with the acoustic communication of this species. The noise and the nearly constant and high humidity produced by the torrents and waterfalls, along with the availability of Light, probably favored the evolution of contrasting colors and visual communication in H. asper: Males of H, aspcr excavate underwater chambers that are probably used to shelter the eggs and to prevent the clutch from being drifted downstream.
Resumo:
The effects of PRL treatment on insulin content and secretion, and Rb-86 and Ca-45 fluxes from neonatal rat islets maintained in culture for 7-9 days were studied. PRL treatment enhanced islet insulin content by 40% and enhanced early insulin secretion evoked by 16.7 mm glucose. Insulin release stimulated by oxotremorine-M, a muscarinic agonist, in the presence of glucose (8.3 or 16.7 mm) was unchanged by PRL treatment. However, PRL treatment potentiated phorbol 12,13-dibutyrate-stimulated insulin secretion in the presence of the above glucose concentrations. PRL treatment potentiated the reduction in Rb-86 efflux induced by glucose or tolbutamide and enhanced the increase in Rb-86 efflux evoked by diazoxide. PRL treatment slightly potentiated the increment in Ca-45 uptake induced by high concentrations of K+, but failed to affect the increment evoked by 16.7 mm glucose. Since glucose-induced Ca-45 uptake was not affected by PRL, we suggest that the enhancement in first phase insulin secretion evoked by glucose in the PRL-treated islets occurs at a step in the secretory process that may involve protein kinase-C. These data further support observations that PRL treatment increases islet sensitivity to glucose.
Resumo:
The paper evaluates the applicability of products of remote sensing in studies related to the structural conditionings of slope stability in saprolites, usually conducted through field surveys. In this article we use a regional approach concentrating on an area of lane duplication of a major highway. In that area, resistance reduction to stress and the low cohesions of muscovite saprolites - schists and gneiss which are associated to geological discontinuities, all result in inumerous instabilities. The joints and foliations were extracted from satellite images as well as aerial photographs. Following that, the study area was divided into various sectors based on the directions and dips of the foliation. Different relationships between the structures and the slopes were analyzed in order to indicate the most feasible type of slope failure in each sector of analysis. The aim of the study is to subsidize further detailed future research.
Resumo:
Natural gums have been traditionally applied in cosmetics and the food industry, mainly as emulsification agents. Due to their biodegradability and excellent mechanical properties, new technological applications have been proposed involving their use with conventional polymers forming blends and composites. In this study, we take advantage of the polyelectrolyte character exhibited by the natural gum Chicha (Sterculia striata), extracted in the Northeastern region of Brazil, to produce electroactive nanocomposites. The nanocomposites were fabricated in the form of ultrathin films by combining a metallic phthalocyanine (nickel tetrasulfonated phthalocyanine, NiTsPc) and the Chicha gum in a tetralayer architecture, in conjunction with conventional polyelectrolytes. The presence of the gum led to an efficient adsorption of the phthalocyanine and enhanced the electrochemical response of the films. Upon combining the electrochemical and UV-vis absorption data, energy diagrams of the Chicha/NiTsPc-based system were obtained. Furthermore, modified electrodes based on gum/phthalocyanine films were able to detect dopamine at concentrations as low as 10(-5) M.
Resumo:
Humic acids (HAs), naturally occurring biomacromolecules, were incorporated into nanostructured polymeric films using the layer-by-layer (LbL) technique, in which HA layers were alternated with layers of poly(allylamine hydrochloride) (PAH). Atomic force microscopy (AFM) revealed very smooth films, with mean roughness varying from 0.89 to 1.19 nm for films containing 5 and 15 PAH/HA bilayers, respectively. The films displayed electroactivity, with the presence of only one reduction peak at ca. 0.675 V (vs Ag/AgCl). Such a well-defined electroactivity allowed the films to be used as highly sensitive pesticide sensors, with detection of pentachlorophenol (PCP) in solutions at concentrations as low as 10(-9) mol L(-1).
Resumo:
Introduction: Study the characteristics of pain vocal emission of newborns during venepuncture through acoustic analysis and relate it to NIPS pain scale and some variables of the newborns.Methods: Emissions of 111 healthy term newborns were recorded, whose lifetime varied from 24 to 72 h. The acoustic analysis was realized with GRAM 5.7 software verifying the occurrence of tense strangled voice quality, sounds, concentration of acoustic energy, breaks, double harmonic breaks and frequency instability, type of phonation, vocal attack and cough. The NIPS scale was realized during venepuncture and descriptive statistical analysis and correlation through Spearman test.Results: Hundred percent of the emissions had guttural sounds, vowels, hard vocal attack, frequency, breaks, double harmonic breaks and tense strangled voice quality; 34.2% higher fundamental frequency; 62.2% periods of emission absence and 100% occurrence of tracing instability, concentration of acoustic energy, inspiratory and expiratory phonation. The cough occurred in 14.4%. The signs of vocal tract constriction associated with all. The parameters. There was a negative correlation between the higher fundamental frequencies and the weight of newborns and positive correlation between cough and NIPS score.Conclusions: the newborn pain emission is tense and strident, the modifications of frequency and spectrographic tracing and the presence of sounds show laryngeal and vocal tract participation. The smaller the newborn weight, the bigger the presence of higher fundamental frequency with tense strangled voice quality and the bigger the NIPS score, the more frequent the cough. Such characteristics make pain crying peculiar, helping in the evaluation of pain during a procedure. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
Nanoporous iron (hydr) oxide electrodes are evaluated as phosphate sensors using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The intensity of the reduction peak current (I-cp) of the ferrihydrite working electrode is tied to phosphate concentration at low pH; however, a hematite electrode combined with the use of EIS provided reliable sensing data at multiple pH values. Nanoporous hematite working electrodes produced an impedance phase component (theta) that shifts with increasing phosphate, and, at chosen frequencies, theta values were fitted for the range 1 nM to 0.1 mM phosphate at pH 4 and pH 7 in 5 mM NaClO4.