969 resultados para ZERO-RANGE PROCESS
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.
Resumo:
In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties of KAlSi(3)O(8):Mn glasses obtained through the sol gel technique were investigated. Samples were obtained with five different molar concentrations of 0.25, 0.5, 1, 2 and 5 mol% of manganese. Transmission Electronic Microscopy (TEM) indicated the occurrence of nanoparticles composed by glass matrix elements with Mn. Best results for TL response were obtained with 0.5 mol% Mn doped sample, which exhibits a TL peak at 180 degrees C. The TL spectrum of this sample presents a broad emission band from 450 to 700 nm with a peak at 575 nm approximately. The emission band fits very well with the characteristic lines of the Mn(2+) emission features. According to this fact, the band at 410 nm can be ascribed to (6)A(1)(S) -> (4)A(1)(G), (4)E(G) transition, while the 545 nm band can be attributed to the superposition of the transitions (6)A(1)(S) -> (4)T(2)(G) and (6)A(1)(S) -> (4)T(1)(G). The dependence of the TL response with the energy of X-rays (27-41 keV) showed a small decrease of the TL intensity in the high energy region. Excitation with blue LEDs showed OSL in the UV region with a fast decay component. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a comparative study of computational fluid dynamics (CFD) and analytical and semiempirical (ASE) methods applied to the prediction of the normal force and moment coefficients of an autonomous underwater vehicle (AUV). Both methods are applied to the. bare hull of the vehicle and to the body-hydroplane combination. The results are validated through experiments in a towing tank. It is shown that the CFD approach allows for a good prediction of the coefficients over the range of angles of attack considered. In contrast with the traditional ASE formulations used in naval and aircraft fields, an improved methodology is introduced that takes advantage of the qualitative information obtained from CFD flow visualizations.
Resumo:
The distribution of clock signals throughout the nodes of a network is essential for several applications. in control and communication with the phase-locked loop (PLL) being the component for electronic synchronization process. In systems with master-slave (MS) strategies, the PLLs are the slave nodes responsible for providing reliable clocks in all nodes of the network. As PLLs have nonlinear phase detection, double-frequency terms appear and filtering becomes necessary. Imperfections in filtering process cause oscillations around the synchronous state worsening the performance of the clock distribution process. The behavior of one-way master-slave (OWMS) clock distribution networks is studied and performances of first- and second-order filter processes are compared, concerning lock-in ranges and responses to perturbations of the synchronous state. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Sound source localization (SSL) is an essential task in many applications involving speech capture and enhancement. As such, speaker localization with microphone arrays has received significant research attention. Nevertheless, existing SSL algorithms for small arrays still have two significant limitations: lack of range resolution, and accuracy degradation with increasing reverberation. The latter is natural and expected, given that strong reflections can have amplitudes similar to that of the direct signal, but different directions of arrival. Therefore, correctly modeling the room and compensating for the reflections should reduce the degradation due to reverberation. In this paper, we show a stronger result. If modeled correctly, early reflections can be used to provide more information about the source location than would have been available in an anechoic scenario. The modeling not only compensates for the reverberation, but also significantly increases resolution for range and elevation. Thus, we show that under certain conditions and limitations, reverberation can be used to improve SSL performance. Prior attempts to compensate for reverberation tried to model the room impulse response (RIR). However, RIRs change quickly with speaker position, and are nearly impossible to track accurately. Instead, we build a 3-D model of the room, which we use to predict early reflections, which are then incorporated into the SSL estimation. Simulation results with real and synthetic data show that even a simplistic room model is sufficient to produce significant improvements in range and elevation estimation, tasks which would be very difficult when relying only on direct path signal components.
Resumo:
Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The optimization of the treatment process for residual waters from a brewery operating under the modality of an anaerobic reactor and activated sludge combination was studied in two phases. In the first stage, lasting for six months, the characteristics and parameters of the plant operation were analyzed, wherein a diversion rate of more than 50% to aerobic treatment, the use of two aeration tanks and a high sludge production prevailed. The second stage comprised four months during which the system worked under the proposed operational model, with the aim of improving the treatment: reduction of the diversion rate to 30% and use of only one aeration tank At each stage, TSS, VSS and COD were measured at the entrance and exit of the anaerobic reactor mid the aeration tanks. The results were compared with the corresponding design specifications and the needed conditions were applied to reduce the diversion rate towards the aerobic process through monitoring the volume and concentration of the affluent, while applying the strategic changes in reactor parameters needed to increase its efficiency. A diversion reduction from 53 to 34% was achieved, reducing the sludge discharge generated in the aerobic system from 3670mg TSS/l. with two aeration tanks down to 2947mf TSS/l using one tank keeping the same relation VSS:TSS (0.55) and an efficiency of total removal of 98% in terms of COD.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In the present paper the process of wood biodeterioration of tipuana trees planted in 7 regions of the city of Sao Paulo, SP was evaluated. On the sidewalks, 1109 trees were analyzed taking into consideration the occurrence and association of the xylophagous organisms (decay fungi and subterranean termites), the wood deterioration and the BHD (breast height diameter). The percentage of wood internal deterioration (%) was obtained by non destructive analysis, using a penetrometer. The results had shown that 75% of the tipuana trees presented BHD superior to 50 cm, characterizing them as adult. Decay fungi in the roots and/or trunk had been observed in 338 trees (30.5%). Subterranean termites of Heterotermes sp. and Coptotermes gestroi species had occurred in 307 trees (27.7%), the latter in high infestation level. The association between the fungi and termites was observed, as well as its relation with the BHD, where a greater value of BHD meant higher wood biodeterioration intensity. For tipuana trees, the BHD was considered an indicative attribute of the internal deterioration intensity, caused by these xylophagous organisms.
Resumo:
The general objective of this study was to evaluate the ordered weighted averaging (OWA) method, integrated to a geographic information systems (GIS), in the definition of priority areas for forest conservation in a Brazilian river basin, aiming at to increase the regional biodiversity. We demonstrated how one could obtain a range of alternatives by applying OWA, including the one obtained by the weighted linear combination method and, also the use of the analytic hierarchy process (AHP) to structure the decision problem and to assign the importance to each criterion. The criteria considered important to this study were: proximity to forest patches; proximity among forest patches with larger core area; proximity to surface water; distance from roads: distance from urban areas; and vulnerability to erosion. OWA requires two sets of criteria weights: the weights of relative criterion importance and the order weights. Thus, Participatory Technique was used to define the criteria set and the criterion importance (based in AHP). In order to obtain the second set of weights we considered the influence of each criterion, as well as the importance of each one, on this decision-making process. The sensitivity analysis indicated coherence among the criterion importance weights, the order weights, and the solution. According to this analysis, only the proximity to surface water criterion is not important to identify priority areas for forest conservation. Finally, we can highlight that the OWA method is flexible, easy to be implemented and, mainly, it facilitates a better understanding of the alternative land-use suitability patterns. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report the complete molecular characterization of the DNA-A and DNA-B of a Brazilian tomato isolate of Tomato severe rugose virus (ToSRV) and the experimental host range of the virus determined using white-fly transmission tests. Genome analysis showed that ToSRV has a close evolutionary relationship with Tomato rugose mosaic virus. Of 33 plants species inoculated with viruliferous Bemisia tabaci biotype B, 13 species were susceptible to ToSRV, nine asymptomatically. Therefore, ToSRV disease management strategy should include the control of infected weeds close to tomato fields.
Resumo:
The utilization of tannery sludge in agricultural areas can be an alternative for its disposal and recycling. Despite this procedure may cause the loss of nitrogen by ammonia volatilization, there is no information about this process in tropical soils. For two years a field experiment was carried out in Rolandia (Parana State, Brazil), to evaluate the amount of NH(3) volatilization due to tannery sludge application on agricultural soil. The doses of total N applied varied from zero to 1200 kg ha(-1), maintained at the surface for 89 days, as usual in this region. The alkalinity of the tannery sludge used was equivalent to between 262 and 361 g CaCO(3) per kg. Michaelis-Menten equation was adequate to estimate NH(3)-N volatilization kinetics. The relation between total nitrogen applied as tannery sludge and the potentially volatilized NH(3)-N, calculated by the chemical-kinetics equation resulted in an average determination coefficient of 0.87 (P > 0.01). In this period, the amount of volatilized NH(3) was more intense during the first 30 days; the time to reach half of the maximum NH(3) volatilization (K(m)) was 13 an 9 days for the first and second experiments, respectively. The total loss as ammonia in the whole period corresponded in average to 17.5% of the total N applied and to 35% of the NH(4)(+)-N present in the sludge. If tannery sludge is to be surface applied to supply N for crops, the amounts lost as NH(3) must be taken into consideration. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Soil compaction, reflected by high bulk density, is an environmental degradation process and new technologies are being developed for its detection. Despite the proven efficiency of remote sensing, it has not been widely used for soil density. Our objective was to evaluate the density of two soils: a Typic Quartzpisament (TQ) and a Rhodic Paleudalf (RP), using spectral reflectance obtained by a laboratory spectroradiometer between 450 and 2500 nm. Undisturbed samples were taken at two depths (0-20 and 60-80 cm), and were artificially compacted. Spectral data, obtained before and after compaction, were compared for both wet and dried compacted samples. Results demonstrated that soil density was greater in RP than in TQ at both depths due to its clayey texture. Spectral data detected high density (compacted) from low density (non-compacted) clayey soils under both wet and dry conditions. The detection of density in sandy soils by spectral reflectance was not possible. The intensity of spectral reflectance of high soil bulk density (compacted) samples was higher than for low density (non-compacted) soils due to changes in soil structure and porosity. Dry samples with high bulk density showed differences in the spectral intensity, but not in the absorption features. Wet samples in equal condition had statistically higher reflectance intensity than that of the low soil bulk density (non-compacted), and absorption differences at 1920 nm, which was due to the altered position of the water molecules. Soil line and spectral reflectance used together could detect soil bulk density variations for the clay soil. This technique could assist in the detection of high soil density in the laboratory by providing new soil information.
Resumo:
The functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions is an important tool for uses as diverse as assessment of the stress-related sensitivity of different plant cultivars and characterization of soil structure. Two of the most pervasive sources of stress are soil resistance to root penetration (SR) and matric potential (psi). However, the assessment of these sources of stress on physiological processes in different soils can be complicated by other sources of stress and by the strong relation between SR and psi in a soil. A multivariate boundary line approach was assessed as a means of reducing these cornplications. The effects of SR and psi stress conditions on plant responses were examined under growth chamber conditions. Maize plants (Zea mays L.) were grown in soils at different water contents and having different structures arising from variation in texture, organic carbon content and soil compaction. Measurements of carbon exchange (CE), leaf transpiration (ILT), plant transpiration (PT), leaf area (LA), leaf + shoot dry weight (LSDW), root total length (RTL), root surface area (RSA) and root dry weight (RDW) were determined after plants reached the 12-leaf stage. The LT, PT and LA were described as a function of SR and psi with a double S-shaped function using the multivariate boundary line approach. The CE and LSDW were described by the combination of an S-shaped function for SR and a linear function for psi. The root parameters were described by a single S-shaped function for SR. The sensitivity to SR and psi depended on the plant parameter. Values of PT, LA and LSDW were most sensitive to SR. Among those parameters exhibiting a significant response to psi, PT was most sensitive. The boundary line approach was found to be a useful tool to describe the functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions. (C) 2009 Elsevier B.V. All rights reserved.