965 resultados para Yield Adaptation
Resumo:
BACKGROUND: Developing and updating high-quality guidelines requires substantial time and resources. To reduce duplication of effort and enhance efficiency, we developed a process for guideline adaptation and assessed initial perceptions of its feasibility and usefulness. METHODS: Based on preliminary developments and empirical studies, a series of meetings with guideline experts were organised to define a process for guideline adaptation (ADAPTE) and to develop a manual and a toolkit made available on a website (http://www.adapte.org). Potential users, guideline developers and implementers, were invited to register and to complete a questionnaire evaluating their perception about the proposed process. RESULTS: The ADAPTE process consists of three phases (set-up, adaptation, finalisation), 9 modules and 24 steps. The adaptation phase involves identifying specific clinical questions, searching for, retrieving and assessing available guidelines, and preparing the draft adapted guideline. Among 330 registered individuals (46 countries), 144 completed the questionnaire. A majority found the ADAPTE process clear (78%), comprehensive (69%) and feasible (60%), and the manual useful (79%). However, 21% found the ADAPTE process complex. 44% feared that they will not find appropriate and high-quality source guidelines. DISCUSSION: A comprehensive framework for guideline adaptation has been developed to meet the challenges of timely guideline development and implementation. The ADAPTE process generated important interest among guideline developers and implementers. The majority perceived the ADAPTE process to be feasible, useful and leading to improved methodological rigour and guideline quality. However, some de novo development might be needed if no high quality guideline exists for a given topic.
Resumo:
Abstract: The canine distemper virus A75/17 wild-type strain, which is unable to replicate in cell lines, was adapted to growth in Vero cells. Sequence comparison between the A75/17 and the Vero cell-adapted A75/17-V virus revealed 7 amino acid differences between the 2 viruses. Three of these were located in the matrix protein, three in the phosphoprotein also changing the V protein but not the C protein and one in the large protein. The phosphoprotein and the large protein constituted the viral RNA polymerase whose activity was studied by transfection experiments using a reverse genetic system with a plasmid encoding a minireplicon and expression plasmids encoding the nucleocapsid protein and the viral RNA polymerase subunits. Surprinsingly, the enzyme of A75/17 CDV was significantly more active in cell lines compared to the polymerase of A75/17-V CDV. The decrease in overall enzyme activity was found to be due to both decreased replication and transcription activity. This polymerase attenuation was confirmed in CHO cells infection stably expressing the dog SLAM receptor mainly found in dog's lymphoid organs and allowing both virus strains to enter these cells at the same efficiency. A75/17-V CDV replicated more slowly in CHODogSLAM cells than A75/17 CDV and syncytium formation was significantly decreased compared to A75/17 infected CHODogSLAM cells.. Cell culture adaptation lead to an attenuated virus strain both in vitro and in vivo with decreased polymerase activity and syncytium forming capability showing an important role of the polymerase in determining the phenoytpe of the virus. In addition, this reduced phenotype of A75/17-V CDV was shown to be due to the P mutations in the P protein only, showing an important function of the polycistronic P gene in the adaptation process. The role of the matrix protein was found not to have any effect on polymerase activity, however its participation in the adaptation process still needs to be elucidated. The accessory proteins V and C were shown to act on polymerase activity, but their functions in virus pathogenicity and in inhibiting the interferon system have not been studied in this thesis. The V proteins have an activating effect on the polymerase of both the A75/17 and the A75/17-V CDV strains. Although the C protein amino acid sequence was not changed during adaptation of wild-type canine distemper virus in Vero cells, the C protein was demonstrated to have opposite effects on polymerase activity of both virus strains suggesting a different interaction of the C protein with the proteins forming the polymerase complex, which could modulate polymeras activity. These effects were demonstrated by transfection experiments and studying recombinant viruses not expressing the C protein. Thus, the abrogation of the C protein decrease the activity of the wild-type polymerase. In contrast, the polymerase activity of the Vero cell- adapted virus is enhanced in the absence of the C protein and this has also been demonstrated with a recombinant virus, which grew faster in the first 48 hours of infection. Future studies will focus on the generation of recombinant wild-type viruses, which should be very helpful in understanding the molecular mechanisms underlying the adaptation process and the loss of pathogenicity.
Resumo:
This thesis examines the history and evolution of information system process innovation (ISPI) processes (adoption, adaptation, and unlearning) within the information system development (ISD) work in an internal information system (IS) department and in two IS software house organisations in Finland over a 43-year time-period. The study offers insights into influential actors and their dependencies in deciding over ISPIs. The research usesa qualitative research approach, and the research methodology involves the description of the ISPI processes, how the actors searched for ISPIs, and how the relationships between the actors changed over time. The existing theories were evaluated using the conceptual models of the ISPI processes based on the innovationliterature in the IS area. The main focus of the study was to observe changes in the main ISPI processes over time. The main contribution of the thesis is a new theory. The term theory should be understood as 1) a new conceptual framework of the ISPI processes, 2) new ISPI concepts and categories, and the relationships between the ISPI concepts inside the ISPI processes. The study gives a comprehensive and systematic study on the history and evolution of the ISPI processes; reveals the factors that affected ISPI adoption; studies ISPI knowledge acquisition, information transfer, and adaptation mechanisms; and reveals the mechanismsaffecting ISPI unlearning; changes in the ISPI processes; and diverse actors involved in the processes. The results show that both the internal IS department and the two IS software houses sought opportunities to improve their technical skills and career paths and this created an innovative culture. When new technology generations come to the market the platform systems need to be renewed, and therefore the organisations invest in ISPIs in cycles. The extent of internal learning and experiments was higher than the external knowledge acquisition. Until the outsourcing event (1984) the decision-making was centralised and the internalIS department was very influential over ISPIs. After outsourcing, decision-making became distributed between the two IS software houses, the IS client, and itsinternal IT department. The IS client wanted to assure that information systemswould serve the business of the company and thus wanted to co-operate closely with the software organisations.
Resumo:
There is a lack of information about fertilization of pineapple grown in the State of São Paulo, Brazil. So a field experiment with pineapple 'Smooth Cayenne' was carried out to study the effects of NPK rates on yield and fruit quality. The trial was located on an Alfisol in the central part of the State of São Paulo (Agudos county). The experimental design was an incomplete NPK factorial, with 32 treatments set up in two blocks. The P was applied only at planting, at the rates of 0; 80; 160 and 320 kg/ha of P2 0(5), as superphosphate. The N and K2O rates were 0; 175; 350, and 700 kg/ha, applied as urea and potassium chloride, respectively, divided in four applications during the growth period. Response functions were adjusted to yield or to fruit characteristics in order to estimate the nutrient rates required to reach maximum values. The results showed quadratic effects of N and K on yield and a maximum of 72 t/ha of fresh fruit was attained with rates of 498 and 394 kg/ha, respectively of N and K2O. In order to reach the maximum fruit size, and to improve the percentage of first class fruit (mass greater than 2.6 kg), were necessary rates of N and K respectively 11 and 43 % higher than those for maximum yield. No effect of P rates was observed on pineapple plant growth, despite the low availability of this nutrient in the soil. The effect of N rates was negative on total soluble solids and total acidity while the opposite occurred with K, which increased also the content of vitamin C. High yield and fruit size were closely related to N and K concentrations in the leaves.
Resumo:
The objective of this work was to evaluate peduncle and fruit yield in clone MS 076 and in a clonal population of drip-irrigated, early dwarf cashew trees propagated by layering, in six cropping seasons. In order to meet the increased water requirements of the crop resulting from plant growth and development, irrigation during the dry season was performed daily according to the following water regime: 15 min/plant/day during the 1st year, 30 min/plant/day during the 2nd year, 45 min/plant/day during the 3rd year and 60 min/plant/day during all subsequent years. Water was supplied by one drip emitter/plant, at an (adjustable) flow rate of 36 L/h.The research was carried out in Fortaleza-Ceará, Brazil, and a random block design was utilized, with five replicates and split-plots. The clones were assigned to plots and the cropping seasons were considered as subplots. The clonal population was superior to the clone only with regard to number of nut shells (NNS), and solely in the first season. The clone was superior to the population as to NNS and peduncle yield (PY) in the second season, and also with regard to the three evaluated traits - NNS, PY, and nut shell yield, in the last three cropping seasons.
Resumo:
Background: Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion: Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Resumo:
En este trabajo se investiga la coherencia y confiabilidad de estimaciones de funciones de densidad de probabilidad (FDP) subjetivas de rendimientos de cultivos realizadas por un amplio grupo de agricultores. Se utilizaron tres técnicas de elicitación diferentes: el método de estimación de FDP en dos pasos, la distribución Triangular y la distribución Beta. Los sujetos entrevistados ofrecieron estimaciones para los valores puntuales de rendimientos de cultivos (medio, máximo posible, más frecuente y mínimo posible) y para las FDP basadas en la estimación de intervalos. Para evaluar la persistencia, se utilizaron los conceptos de persistencia temporal y persistencia metodológica. Los resultados son interesantes para juzgar la adecuación de las técnicas de estimación de probabilidades subjetivas a los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
En este trabajo se investiga la persistencia de las estimaciones puntuales subjetivas de rendimientos en cultivos anua- les realizadas por un amplio grupo de agricultores. La persistencia en el tiempo es una condición necesaria para la co- herencia y la confiabilidad de las estimaciones subjetivas de variables aleatorias. Los sujetos entrevistados estimaron valores puntuales de rendimientos de cultivos anuales (rendimientos medio, mayor, mínimo y más frecuente). Se han encontrado diferencias relativas poco importantes en todas las variables, excepto en los rendimientos mínimos, donde existe una alta dispersión. Los resultados son interesantes para estimar la adecuación de las técnicas de estimación de probabilidades subjetivas para ser utilizadas en los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
Background: Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results: Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions: We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.
Resumo:
Shading treatments of 50% of the incident radiation were applied to the semidwarf wheat cultivar Leones INTA before and after anthesis in two field experiments in Argentina in 1987 and 1988. The treatments reduced biological (above-ground dry matter) yield, grain yield and number of grains/m2. Number of grains/m2 was closely and linearly correlated with ear dry weight at anthesis and with the photothermal quotient, calculated from 20 days before to 10 days after anthesis. Grain yield was sink limited, and the shading treatments reduced sink strength. The contribution of preanthesis assimilates to grain yield was smaller in the shaded crops than in the unshaded controls; in unshaded crops, almost 40% of grain yield was contributed by preanthesis assimilates whilst in preanthesis shaded crops this contribution was negligible. The proportion of preanthesis assimilates contributed to the grain was closely related to the decrease in stem dry weight during grain filling. The effects of shading on main stems and tillers were the same.
Resumo:
Further genetic gains in wheat yield are required to match expected increases in demand. This may require the identification of physiological attributes able to produce such improvement, as well as the genetic bases controlling those traits in order to facilitate their manipulation. In the present paper, a theoretical framework of source and sink limitation to wheat yield is presented and the fine-tuning of crop development as an alternative for increasing yield potential is discussed. Following a top-down approach, most crop physiologists have agreed that the main attribute explaining past genetic gains in yield was harvest index (HI). By virtue of previous success, no further gains may be expected in HI and an alternative must be found. Using a bottom-up approach, the present paper firstly provides evidence on the generalized sink-limited condition of grain growth, determining that for further increases in yield potential, sink strength during grain filling has to be increased. The focus should be on further increasing grain number per m2, through fine-tuning pre-anthesis developmental patterns. The phase of rapid spike growth period (RSGP) is critical for grain number determination and increasing spike growth during pre-anthesis would result in an increased number of grains. This might be achieved by lengthening the duration of the phase (though without altering flowering time), as there is genotypic variation in the proportion of pre-anthesis time elapsed either before or after the onset of the stem elongation phase. Photoperiod sensitivity during RSGP could be then used as a genetic tool to further increase grain number, since slower development results in smoother floret development and more floret primordia achieve the fertile floret stage, able to produce a grain. Far less progress has been achieved on the genetic control of this attribute. None of the well-known major Ppd alleles seems to be consistently responsible for RSGP sensitivity. Alternatives for identifying the genetic factors responsible for this sensitivity (e.g. quantitative trait locus (QTL) identification in mapping populations) are being considered.
Resumo:
Wheat yield and grain nitrogen concentration (GNC; mg N/g grain) are frequently negatively correlated. In most growing conditions, this is mainly due to a feedback process between GNC and the number of grains/m2. In Mediterranean conditions, breeders may have produced cultivars with conservative grain set. The present study aimed at clarifying the main physiological determinants of grain nitrogen accumulation (GNA) in Mediterranean wheat and to analyse how breeding has affected them. Five field experiments were carried out in north-eastern Spain in the 2005/06 and 2006/ 07 growing seasons with three cultivars released at different times and an advanced line. Depending on the experiment, source-sink ratios during grain filling were altered by reducing grain number/m2 either through pre-anthesis shading (unshaded control or 0.75 shading only between jointing and anthesis) or by directly trimming the spikes after anthesis and before the onset of the effective grain filling period (un-trimmed control or spikes halved 7–10 days after anthesis). Grain nitrogen content (GN content ; mg N/grain) decreased with the year of release of the genotypes. As the number of grains/m2 was also increased by breeding there was a clear dilution effect on the amount of nitrogen allocated to each grain. However, the increase in GN content in old genotypes did not compensate for the loss in grain nitrogen yield (GNY) due to the lower number of grains/m2. GN content of all genotypes increased (increases ranged from 0.13 to 0.40 mg N/grain, depending on experiment and genotype) in response to the post-anthesis spike trimming or pre-anthesis shading. The degree of source-limitation for GNA increased with the year of release of the genotypes (and thus with increases in grain number/m2) from 0.22 (mean of the four manipulative experiments) in the oldest cultivar to 0.51 (mean of the four manipulative experiments) in the most modern line. It was found that final GN content depended strongly on the source-sink ratio established at anthesis between the number of grains set and the amount of nitrogen absorbed at this stage. Thus, Mediterranean wheat breeding that improved yield through increases in grain number/m2 reduced the GN content by diluting a rather limited source of nitrogen into more grains. This dilution effect produced by breeding was further confirmed by the reversal effect produced by grain number/m2 reductions due to either pre-anthesis shading or post-anthesis spike trimming.
Resumo:
The relationship between yield, carbon isotope discrimination and ash content in mature kernels was examined for a set of 13 barley (Hordeum vulgare) cultivars. Plants were grown under rainfed and well-irrigated conditions in a Mediterranean area. Water deficit caused a decrease in both grain yield and carbon isotope discrimination (Δ). The yield was positively related to Δ and negatively related to ash content, across genotypes within each treatment. However, whereas the correlation between yield and Δ was higher for the set of genotypes under well-irrigated (r=0.70, P<0.01) than under rainfed (r=0.42) conditions, the opposite occurred when yield and ash content were related, ie r=-0.38 under well-irrigated and r=-0.73, (P<0.01) under rainfed conditions. Carbon isotope discrimination and ash content together account for almost 60% of the variation in yield, in both conditions. There was no significant relationship (r=-0.15) between carbon isotope discrimination and ash content in well-irrigated plants, whereas in rainfed plants, this relationship, although significant (r=-0.54, P< 0.05), was weakly negative. The concentration of several mineral elements was measured in the same kernels. The mineral that correlated best with ash content, yield and A, was K. For yield and Δ, although the relationship with K followed the same pattern as the relationhip with ash content, the correlation coefficients were lower. Thus, mineral accumulation in mature kernels seems to be independent of transpiration efficiency. In fact, filling of grains takes place through the phloem pathway. The ash content in kernels is proposed as a complementary criterion, in addition to kernel Δ, to assess genotype differences in barley grain yield under rainfed conditions.