947 resultados para XML, Schema matching
Resumo:
Increasing use of the term, Strategic Human Resource Management (SHRM), reflects the recognition of the interdependencies between corporate strategy, organization and human resource management in the functioning of the firm. Dyer and Holder (1988) proposed a comprehensive Human Resource Strategic Typology consisting of three strategic types--inducement, investment and involvement. This research attempted to empirically validate their typology and also test the performance implications of the match between corporate strategy and HR strategy. Hypotheses were tested to determine the relationships between internal consistency in HRM sub-systems, match between corporate strategy and HR strategy, and firm performance. Data were collected by a mail survey of 998 senior HR executives of whom 263 returned the completed questionnaire. Financial information on 909 firms was collected from secondary sources like 10-K reports and CD-Disclosure. Profitability ratios were indexed to industry averages. Confirmatory Factor Analysis using LISREL provided support in favor of the six-factor HR measurement model; the six factors were staffing, training, compensation, appraisal, job design and corporate involvement. Support was also found for the presence of a second-order factor labeled "HR Strategic Orientation" explaining the variations among the six factors. LISREL analysis also supported the congruence hypothesis that HR Strategic Orientation significantly affects firm performance. There was a significant associative relationship between HR Strategy and Corporate Strategy. However, the contingency effects of the match between HR and Corporate strategies were not supported. Several tests were conducted to show that the survey results are not affected by non-response bias nor by mono-method bias. Implications of these findings for both researchers and practitioners are discussed. ^
Resumo:
This study examined the effect of schemas on consistency and accuracy of memory across interviews, providing theoretical hypotheses explaining why inconsistencies may occur. The design manipulated schema-typicality of items (schema-typical and atypical), question format (free-recall, cued-recall and recognition) and retention interval (immediate/2 week and 2 week/4 week). Consistency, accuracy and experiential quality of memory were measured. ^ All independent variables affected accuracy and experiential quality of memory while question format was the only variable affecting consistency. These results challenge the commonly held notion in the legal arena that consistency is a proxy for accuracy. The study also demonstrates that other variables, such as item-typicality and retention interval have different effects on consistency and accuracy in memory. ^
Resumo:
The Three-Layer distributed mediation architecture, designed by Secure System Architecture laboratory, employed a layered framework of presence, integration, and homogenization mediators. The architecture does not have any central component that may affect the system reliability. A distributed search technique was adapted in the system to increase its reliability. An Enhanced Chord-like algorithm (E-Chord) was designed and deployed in the integration layer. The E-Chord is a skip-list algorithm based on Distributed Hash Table (DHT) which is a distributed but structured architecture. DHT is distributed in the sense that no central unit is required to maintain indexes, and it is structured in the sense that indexes are distributed over the nodes in a systematic manner. Each node maintains three kind of routing information: a frequency list, a successor/predecessor list, and a finger table. None of the nodes in the system maintains all indexes, and each node knows about some other nodes in the system. These nodes, also called composer mediators, were connected in a P2P fashion. ^ A special composer mediator called a global mediator initiates the keyword-based matching decomposition of the request using the E-Chord. It generates an Integrated Data Structure Graph (IDSG) on the fly, creates association and dependency relations between nodes in the IDSG, and then generates a Global IDSG (GIDSG). The GIDSG graph is a plan which guides the global mediator how to integrate data. It is also used to stream data from the mediators in the homogenization layer which connected to the data sources. The connectors start sending the data to the global mediator just after the global mediator creates the GIDSG and just before the global mediator sends the answer to the presence mediator. Using the E-Chord and GIDSG made the mediation system more scalable than using a central global schema repository since all the composers in the integration layer are capable of handling and routing requests. Also, when a composer fails, it would only minimally affect the entire mediation system. ^
Resumo:
This poster presentation from the May 2015 Florida Library Association Conference, along with the Everglades Explorer discovery portal at http://ee.fiu.edu, demonstrates how traditional bibliographic and curatorial principles can be applied to: 1) selection, cross-walking and aggregation of metadata linking end-users to wide-spread digital resources from multiple silos; 2) harvesting of select PDFs, HTML and media for web archiving and access; 3) selection of CMS domains, sub-domains and folders for targeted searching using an API. Choosing content for this discovery portal is comparable to past scholarly practice of creating and publishing subject bibliographies, except metadata and data are housed in relational databases. This new and yet traditional capacity coincides with: Growth of bibliographic utilities (MarcEdit); Evolution of open-source discovery systems (eXtensible Catalog); Development of target-capable web crawling and archiving systems (Archive-it); and specialized search APIs (Google). At the same time, historical and technical changes – specifically the increasing fluidity and re-purposing of syndicated metadata – make this possible. It equally stems from the expansion of freely accessible digitized legacy and born-digital resources. Innovation principles helped frame the process by which the thematic Everglades discovery portal was created at Florida International University. The path -- to providing for more effective searching and co-location of digital scientific, educational and historical material related to the Everglades -- is contextualized through five concepts found within Dyer and Christensen’s “The Innovator’s DNA: Mastering the five skills of disruptive innovators (2011). The project also aligns with Ranganathan’s Laws of Library Science, especially the 4th Law -- to "save the time of the user.”
Resumo:
Peer reviewed
Resumo:
In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.
In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.
Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
Prospective estimation of patient CT organ dose prior to examination can help technologist adjust CT scan settings to reduce radiation dose to patient while maintaining certain image quality. One possible way to achieve this is matching patient to digital models precisely. In previous work, patient matching was performed manually by matching the trunk height which was defined as the distance from top of clavicle to bottom of pelvis. However, this matching method is time consuming and impractical in scout images where entire trunk is not included. Purpose of this work was to develop an automatic patient matching strategy and verify its accuracy.
Resumo:
With the popularization of GPS-enabled devices such as mobile phones, location data are becoming available at an unprecedented scale. The locations may be collected from many different sources such as vehicles moving around a city, user check-ins in social networks, and geo-tagged micro-blogging photos or messages. Besides the longitude and latitude, each location record may also have a timestamp and additional information such as the name of the location. Time-ordered sequences of these locations form trajectories, which together contain useful high-level information about people's movement patterns.
The first part of this thesis focuses on a few geometric problems motivated by the matching and clustering of trajectories. We first give a new algorithm for computing a matching between a pair of curves under existing models such as dynamic time warping (DTW). The algorithm is more efficient than standard dynamic programming algorithms both theoretically and practically. We then propose a new matching model for trajectories that avoids the drawbacks of existing models. For trajectory clustering, we present an algorithm that computes clusters of subtrajectories, which correspond to common movement patterns. We also consider trajectories of check-ins, and propose a statistical generative model, which identifies check-in clusters as well as the transition patterns between the clusters.
The second part of the thesis considers the problem of covering shortest paths in a road network, motivated by an EV charging station placement problem. More specifically, a subset of vertices in the road network are selected to place charging stations so that every shortest path contains enough charging stations and can be traveled by an EV without draining the battery. We first introduce a general technique for the geometric set cover problem. This technique leads to near-linear-time approximation algorithms, which are the state-of-the-art algorithms for this problem in either running time or approximation ratio. We then use this technique to develop a near-linear-time algorithm for this
shortest-path cover problem.
Resumo:
This article presents applications of reconfigurable matching networks for RF amplifier design. Two possible solutions are given, one where the switching element is a PIN diode, and the other is based on graphene. Due to the fact that its conductivity depends on applied bias voltage, the graphene-based circuits can be used in microwave circuits as controllable elements. The structure of the proposed switch is very simple and it is particularly convenient for microstrip-based circuits. Because of that, a design of reconfigurable amplifier with the graphene-based switch is presented together with the one which has the PIN diode switch. Both amplifiers have the same specifications, and the one with the PIN diode switch is fabricated. The amplifier utilizing the PIN switch was used as a reference to make a comparison the two types of switches. Results of both amplifiers are very similar which indicates possible future applications of the graphene-based switch.
Resumo:
People recommenders are a widespread feature of social networking sites and educational social learning platforms alike. However, when these systems are used to extend learners’ Personal Learning Networks, they often fall short of providing recommendations of learning value to their users. This paper proposes a design of a people recommender based on content-based user profiles, and a matching method based on dissimilarity therein. It presents the results of an experiment conducted with curators of the content curation site Scoop.it!, where curators rated personalized recommendations for contacts. The study showed that matching dissimilarity of interpretations of shared interests is more successful in providing positive experiences of breakdown for the curator than is matching on similarity. The main conclusion of this paper is that people recommenders should aim to trigger constructive experiences of breakdown for their users, as the prospect and potential of such experiences encourage learners to connect to their recommended peers.
Resumo:
De Groot, D. (2016). Flexibele Leerroutes voor Propedeusestudenten: Grounded Theory Onderzoek naar het Identificeren van Studentkenmerken in de Matching, ten behoeve van een Vraaggerichte, Gepersonaliseerde Leerroute in de Propedeuse Social Work. Juli, 26, 2016, Heerlen, Nederland: Open Universiteit.