983 resultados para Willson, Francis Bond Head
Resumo:
The valence of Pr and relationship between bond covalency and T-c in Y1-xPrxBa2Cu3O7 (x = 0-1) have been studied using complex chemical bond theory. The results indicate that the depression of superconductivity in Y1-xPrxBa2Cu3O7 can be reasonably explained by bond covalency difference for the bonds between CuO2 plane and CuO chain. T-c decreases with the decreasing of bond covalency difference and reaches zero when bond covalency difference is zero (or bond covalency in CuO2 exceeds that in CuO chain) at Pr concentration 0.55 and valence +3.30. These are in good agreement with the experiments and meanwhile suggest that the valence of Pr is + 3.30 in Y1-xPrxBa2Cu3O7. The results also indicate that for Pr valence less than +3.15, superconductivity always exists for whatever Pr concentration, whereas for Pr with a valence of +4.0, superconductivity disappears as soon as Pr concentration exceeds 0.19. This supports with the viewpoint that higher valence Pr will contribute more electrons to CuO2 plane, filling the mobile holes responsible for conduction. For PrBa2Cu3O7 with no Ba-site Pr, our calculation suggests that it will be a superconductor if the average valence of Pr is less than +3.15. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Charge transfer and bond ionicity of some monovalent, divalent, and trivalent binary crystals of A(N)B(8-N) type have been investigated using the self-consistent method. The method divides the binary crystal systems into two subsystems which contain only one kind of element each in physical space. The charge transfer values are obtained by adjusting the charge in a self-consistent way. Based on the obtained charge transfer values, an empirical formula for bond ionicity has been proposed. It has been shown that the present results for bond ionicity are in good agreement with the previous theoretical study delivered by Levine and Pauling. The results also indicate that a large magnitude of charge transfer (or less excess charge in the bonding region) gives rise to high bond ionicity (or low bond covalency); this agrees well with the viewpoint that the excess charge in the bonding region is the origin of the formation of bond covalency. (C) 1998 American Institute of Physics. [S0021-9606(98)00837-X].
Resumo:
By using the dielectric description theory of ionicity of solids, chemical bond properties of rare earth ions with various ligands are studied. Calculated results show that chemical bond properties of the same rare earth ion and the same ligand in different crystals depend on the crystal structures. In a series of compounds, chemical bond properties of crystals containing different rare earth ions are similar. The magnitude of covalency of chemical bonds of trivalent rare earth ions and various ligands has an order like F
Resumo:
The valences of Cu and bond covalencies in Y1-xCaxBa2Cu3O6+y, have been investigated using complex chemical bond theory, This theory is the generalization of Phillips, Van Vechten, Levine, and Tanaka's scheme. The results indicate that the valences of Cu(1) and Cu(2) in our calculation agree well with those obtained by the bond valence sum method. The valences of Cu(1) and Cu(2) in our calculation also suggest that the holes introduced by Ca substitution only reside in CuO2 planes and there is a competing mechanism for the hole density in CuO2 planes between,Ca doping and oxygen depletion. These conclusions are in satisfactory agreement with experiments. The calculated ordering of covalencies is Cu(1)-O(4)>Cu(1)-O(1)>Cu(2)-O(2,3)>Cu(2)-O(1)>Ca-O>Y-O similar to Ba-O, regardless of the Ca doping level and oxygen content. [S0163-1829(98)03325-6].
Resumo:
SmCl3, reacted with CpNa (Cp = Cyclopentadienyl) in the ratio of 1:3 in THF, which then was reacted with (S)-(+)-N-1-(phenylethyl) salicylideneamine/toluene to yield the title complex, [GRAPHICS] The X-ray crystal structure determination of the title complex reveals that 1 is a dimer with intramolecular C-C bond formation and hydrogen transfer, which leads to the configuration turnover of the carbon atom at the benzyl position of the ligand, while those of the newly formed asymmetric centers may have either Ii or S type configurations. (C) 1998 Elsevier Science Ltd. All rights reserved.
Dependence of superconducting temperature on chemical bond parameters in YBa2Cu3O6+delta (delta=0-1)
Resumo:
The chemical bond parameters, that is ionicities and average energy gaps, for all types of chemical bonds in YBa2Cu3O6+delta have been investigated with variation of oxygen content delta (delta = 0.0, 0.35, 0.45, 0.58, 0.64, 0.73, 0.78, 0.81, 0.95, 1.00). The theory used is the complex crystal chemical bond theory, which is the development of P-V-L theory. The two plateaus near 90 K and 60 K in superconducting transition temperatures, and the disappearance of superconductivity with the change of oxygen content, were reasonably explained by chemical bond parameters. The results also showed that the Cu-O chains play a vital role in the transition from non-superconductors to superconductors, and the highest transition temperature occurred when the plane-chain reached a coupling state. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The energy band structures of LaX(X=N, P, As, Sb) crystals have been studied by using LMTO-ASA method. The calculated energy gaps of these crystals are 2. 30 eV for LaN, 2. 05 eV for LaP, 1. 66 eV for LaAs and 1. 34 eV for LaSb. The results are in good agreement with experimental data, At the same time, using these calculated results of energy band structures of these crystals, the chemical bond properties have been analyzed and calculated, The covalency values of these crystals are 26.15% for LaN, 32.54% for LaP, 33.30% for LaAs and 36.49% for LaSb, which agree satisfactorily with the calculated ones by using PV (Phillips-Vechten) theory.
Resumo:
Second order nonlinear optical (NLO) tensor coefficients of LiXO3 (X = I, Nb, Ta) type crystals have been evaluated on the basis of the dielectric theory of complex crystals and the modified bond charge model. The current method is capable of calculating single bond contributions to the total second order NLO susceptibility. The tenser values thus calculated agree well with experimental data. By introducing the subformula equation and the concept of the effective charge of one valence electron, we are able to successfully treat such complex crystals as LiXO3 type compounds. In addition, the bond charge expression is modified to a more reasonable form for complex crystals. (C) 1998 Elsevier Science B.V.
Resumo:
RBa2Cu3O7 (R = Pr, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm) has been studied using complex chemical bond theory. The results indicated that with the decreasing of R radius, the ionicities for all considered types of bond decrease. This is in good agreement with the experimental fact that T-c decreases with the decreasing of R radius. PrBa2Cu3O7 with no Ba-site Pr in this calculation is also predicted to be a superconductor. This supports the conclusion obtained by Blackstead et al. The ionicity for each bond obeys the following order: Ba-O > R-O > Cu(2)-O(1) > Cu(2)-O(2,3) > Cu(1)-O(4) similar to Cu(1)-O(1).
Resumo:
NdCl3 reacts with excess CpNa (Cp=Cyclopentadienyl) in THF, followed by sequent treatment with (S)-(+)-N-(1-phenylethyl)salicylideneamine led to the formation of title compound, [GRAPHICS] The X-ray structure determination shows that it is a dimer with internal C-C bond formation and hydrogen transfer between one of Cp ring and the C=N bond of Schiff base ligand. (C) 1997 Elsevier Science S.A.
Resumo:
A novel and quantitative study on structure-property relationships has been carried out in urea crystal, based on the dielectric theory of complex crystals and the modified Levine bond charge model, mainly from the chemical bond viewpoint. For the first time, it was treated like this, and the bond parameters and linear and nonlinear characteristics of constituent chemical bonds were presented quantitatively. The theoretical result agrees satisfactorily with the experimental datum and can reasonably explain the nonlinear origin of urea crystal, that is, the C-N bond in the conjugated system of bonds O double left arrow C<--N-H. At the same time, the novel method should be a useful tool toward the future development of the search for new nonlinear optical (NLO) materials in the organic crystal field.
Resumo:
A theoretical method has been set up to calculate the electrooptic tensor coefficients r(ijk), based on the Phillips-Van Vechten (PV) dielectric theory and the Levine bond charge model, Starting from the crystal structure data and only introducing the experimentally determined optical permittivity and dielectric constant, the electro-optic tensor coefficients r(ijk) can be quantitatively predicted, The theoretical calculations are in good agreement with experiment in the case of zinc blende and wurtzite crystals, For zinc blende crystals, the effects of covalent radii on the linear electro-optic coefficients are discussed. (C) 1997 Academic Press.
Resumo:
A systematic and quantitative research on the structure-property correlation has been carried out in KH2PO4 (KDP), NH4H2PO4 (ADP) and HIO3, based on the dielectric theory of complex crystals and the Levine bond charge model. We, for the first time, successfully solve the problems in the calculation of the nonlinearities of the complex inorganic nonlinear optical (NLO) crystals, which have O-H bonds in their crystal structures. We do this by introducing the bond-valence equation we have set up, calculating the nonlinear optical tensor coefficients d(ijk) of these three compounds, quantitatively determining the contributions of each type of bond to the total second-order NLO tensor coefficient (d(ijk)) of the crystal, and presenting the bond parameters and the linear properties of each kind of bond. For the first time, the NLO coefficient d(36) for ADP was calculated. All calculated results are in good agreement with experimental data. We found that O-H bonds also play an important role in these crystals, except for in the important anionic groups (PO4 groups and IO3 groups). All the results thus calculated show that our method is useful in evaluating the NLO coefficients of the inorganic NLO crystals containing O-H bonds in their structures, and should be a useful tool toward the future research into new nonlinear optical materials of this kind.
Resumo:
Two new chiral liquid crystals of schiff-base type have been synthesized. This series of compounds contain a-chloro acidic ester chain prepared from commercially available L-valine. Both of the compounds exhibit tilted smectic phases; their phase transitions were studied using DSC and polarized optical microscopy; the influence of intramolecular hydrogen bonds on the phase behavior was studied as well.
Resumo:
Two new hydrogen bond induced liquid crystals with 4-butoxy benzoic acid as the proton donor and two chiral substituted stilbazole as the proton acceptor have been synthesized. Their liquid crystal transitions were studied by DSC and optical polarized microscope, the IR spectra of the complexes show the existence of the intermolecular hydrogen bond. The results of DSC and optical polarized microscope show that one of them (4BA-VSZ) has a chiral smectic C phase.