791 resultados para Web Data Mining


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Construcción y explotación de un almacén de datos de planificación hidrológica para la Confederación Hidrográfica del Norte y Este.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Memòria del treball de fi de carrera on s'ha construït i explotat un magatzem de dades, partint d'unes dades en un sistema OLTP a un sistema multidimensional OLAP, tot això sobre amb les eines Oracle Express Edition 10v i Oracle Discoverer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consumer reviews, opinions and shared experiences in the use of a product is a powerful source of information about consumer preferences that can be used in recommender systems. Despite the importance and value of such information, there is no comprehensive mechanism that formalizes the opinions selection and retrieval process and the utilization of retrieved opinions due to the difficulty of extracting information from text data. In this paper, a new recommender system that is built on consumer product reviews is proposed. A prioritizing mechanism is developed for the system. The proposed approach is illustrated using the case study of a recommender system for digital cameras

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Construcción y explotación de un almacén de datos de planificación hidrológica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims to survey the techniques and methods described in literature to analyse and characterise voltage sags and the corresponding objectives of these works. The study has been performed from a data mining point of view

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monitor a distribution network implies working with a huge amount of data coining from the different elements that interact in the network. This paper presents a visualization tool that simplifies the task of searching the database for useful information applicable to fault management or preventive maintenance of the network

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Model predictiu basat en xarxes bayesianes que permet identificar els pacients amb major risc d'ingrés a un hospital segons una sèrie d'atributs de dades demogràfiques i clíniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La UOC ha detectat que en els estudis de Diplomatura de Ciències Empresarials hi ha una quarta part dels estudiants que no continuen els estudis després del primer semestre. La UOC, com a client, ha facilitat les dades de matrícula de 20 semestres d'aquests estudis. Es demana que es cerqui quina o quines poden ser les causes d'aquest abandonament i una proposta per evitar-ho.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudio de minería de datos sobre las causas del abandono de los estudiantes de una carrera de la UOC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past, sensors networks in cities have been limited to fixed sensors, embedded in particular locations, under centralised control. Today, new applications can leverage wireless devices and use them as sensors to create aggregated information. In this paper, we show that the emerging patterns unveiled through the analysis of large sets of aggregated digital footprints can provide novel insights into how people experience the city and into some of the drivers behind these emerging patterns. We particularly explore the capacity to quantify the evolution of the attractiveness of urban space with a case study of in the area of the New York City Waterfalls, a public art project of four man-made waterfalls rising from the New York Harbor. Methods to study the impact of an event of this nature are traditionally based on the collection of static information such as surveys and ticket-based people counts, which allow to generate estimates about visitors’ presence in specific areas over time. In contrast, our contribution makes use of the dynamic data that visitors generate, such as the density and distribution of aggregate phone calls and photos taken in different areas of interest and over time. Our analysis provides novel ways to quantify the impact of a public event on the distribution of visitors and on the evolution of the attractiveness of the points of interest in proximity. This information has potential uses for local authorities, researchers, as well as service providers such as mobile network operators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the last decade, high-resolution (HR)-MS has been associated with qualitative analyses while triple quadrupole MS has been associated with routine quantitative analyses. However, a shift of this paradigm is taking place: quantitative and qualitative analyses will be increasingly performed by HR-MS, and it will become the common 'language' for most mass spectrometrists. Most analyses will be performed by full-scan acquisitions recording 'all' ions entering the HR-MS with subsequent construction of narrow-width extracted-ion chromatograms. Ions will be available for absolute quantification, profiling and data mining. In parallel to quantification, metabotyping will be the next step in clinical LC-MS analyses because it should help in personalized medicine. This article is aimed to help analytical chemists who perform targeted quantitative acquisitions with triple quadrupole MS make the transition to quantitative and qualitative analyses using HR-MS. Guidelines for the acceptance criteria of mass accuracy and for the determination of mass extraction windows in quantitative analyses are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A realidade mundial é preocupante no que diz respeito ao aumento de ocorrências de perdas e fraudes em redes de distribuição de energia eléctrica. Em Cabo Verde, mas precisamente na Cidade da Praia a realidade é ainda mais preocupante devido ao número de ocorrências e a gravidade dos mesmos. Propõe-se um trabalho de investigação sobre perdas e fraudes de energia eléctrica baseado na análise dos dados relativos aos registos dos clientes na Base de Dados da Electra (Cabo Verde), com o intuito de nortear as tomadas de decisões de gestão estratégica no que diz respeito às políticas de controlo e prevenção de perdas e fraudes de energia eléctrica. O trabalho baseia-se na recolha e selecção de dados a organizar numa Data Warehouse para depois aplicar as tecnologias OLAP para a identificação de perdas nos Postos de Transformação e zonas geográficas da Cidade da Praia em Cabo Verde e posteriormente identificar possíveis fraudes de energia eléctrica nos clientes finais utilizando Data Mining. Os resultados principais consistiram na identificação de situações de perdas de energia eléctrica nos Postos de Transformação, a identificação de áreas críticas seleccionadas para inspecção dos seus clientes finais e a detecção de padrões de anomalias associadas ao perfil dos clientes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolite profiling is critical in many aspects of the life sciences, particularly natural product research. Obtaining precise information on the chemical composition of complex natural extracts (metabolomes) that are primarily obtained from plants or microorganisms is a challenging task that requires sophisticated, advanced analytical methods. In this respect, significant advances in hyphenated chromatographic techniques (LC-MS, GC-MS and LC-NMR in particular), as well as data mining and processing methods, have occurred over the last decade. Together, these tools, in combination with bioassay profiling methods, serve an important role in metabolomics for the purposes of both peak annotation and dereplication in natural product research. In this review, a survey of the techniques that are used for generic and comprehensive profiling of secondary metabolites in natural extracts is provided. The various approaches (chromatographic methods: LC-MS, GC-MS, and LC-NMR and direct spectroscopic methods: NMR and DIMS) are discussed with respect to their resolution and sensitivity for extract profiling. In addition the structural information that can be generated through these techniques or in combination, is compared in relation to the identification of metabolites in complex mixtures. Analytical strategies with applications to natural extracts and novel methods that have strong potential, regardless of how often they are used, are discussed with respect to their potential applications and future trends.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A realidade mundial é preocupante no que diz respeito ao aumento de ocorrências de perdas e fraudes em redes de distribuição de energia eléctrica. Em Cabo Verde, mas precisamente na Cidade da Praia a realidade é ainda mais preocupante devido ao número de ocorrências e a gravidade dos mesmos. Propõe-se um trabalho de investigação sobre perdas e fraudes de energia eléctrica baseado na análise dos dados relativos aos registos dos clientes na Base de Dados da Electra (Cabo Verde), com o intuito de nortear as tomadas de decisões de gestão estratégica no que diz respeito às políticas de controlo e prevenção de perdas e fraudes de energia eléctrica. O trabalho baseia-se na recolha e selecção de dados a organizar numa Data Warehouse para depois aplicar as tecnologias OLAP para a identificação de perdas nos Postos de Transformação e zonas geográficas da Cidade da Praia em Cabo Verde e posteriormente identificar possíveis fraudes de energia eléctrica nos clientes finais utilizando Data Mining. Os resultados principais consistiram na identificação de situações de perdas de energia eléctrica nos Postos de Transformação, a identificação de áreas críticas seleccionadas para inspecção dos seus clientes finais e a detecção de padrões de anomalias associadas ao perfil dos clientes.