978 resultados para Waste products.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report chromium isotope compositions, expressed as delta Cr-53/ 52 in per mil (&) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth's mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i. e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed delta Cr-53/ 52 in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth's mantle Cr inventory is uniform at - 0.079 +/- 0.129& (2SD), which we named here as a ` canonical' mantle d 53/ 52 Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth's geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about +/- 0.100&, since at least the Early Archean times (similar to 3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i. e., serpentinized harzburgites, lherzolites) that revealed large positive delta Cr-53/ 52 anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On Ignition (LOI) parameter, which determines the amount of structurally bound water (OH/ H2O) present in secondary hydrated minerals like serpentine. Overall, we observed that altered ultramafic rocks that yielded the highest LOI values, and the lowest amounts of fluid mobile elements, also yielded the heaviest delta Cr-53/ 52 signatures. Therefore, we conclude that secondary alteration (i.e., hydration, serpentinization) of ultramafic rocks in near-surface oxidative environments tend to shift the bulk Cr isotope composition of the weathered products to isotopically heavier values, pointing to a dynamic redox cycling of Cr in the Earth's crustal and near-surface environments. Hence, if validated by future

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An industrial waste liquor having high sulfate concentrations was subjected to biological treatment using the sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans. Toxicity levels of different sulfate, cobalt and nickel concentrations toward growth of the SRB with respect to biological sulfate reduction kinetics was initially established. Optimum sulfate concentration to promote SRB growth amounted to 0.8 - 1 g/L. The strain of D. desulfuricans used in this study initially tolerated up to 4 -5 g/L of sulfate or 50 mg/L of cobalt and nickel, while its tolerance could be further enhanced through adaptation by serial subculturing in the presence of increasing concentrations of sulfate, cobalt and nickel. From the waste liquor, more than 70% of sulfate and 95% of cobalt and nickel could be precipitated as sulfides, using a preadapted strain of D. desulfuricans. Probable mechanisms involving biological sulfide precipitation and metal adsorption onto precipitates and bacterial cells are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feeding 9-10billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6Gt CO2-eq. yr(-1)) in meeting both challenges than do supply-side measures (1.5-4.3Gt CO2-eq. yr(-1) at carbon prices between 20 and 100US$ tCO(2)-eq. yr(-1)), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycling plastic water bottles has become one of the major challenges world wide. The present study provides an approach for the use of plastic waste as reinforcement material in soil, which can be used for ground improvement, subbases, and subgrade preparation in road construction. The experimental results are presented in the form of stress-strain-pore water pressure response and compression paths. On the basis of experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with the addition of a small percentage of plastic waste to the soil. In this paper, an analytical model is proposed to evaluate the response of plastic waste mixed soil. It is noted that the model captures the stress-strain and pore water pressure response of all percentages of plastic waste adequately. The paper also provides a comparative study of failure stress obtained from different published models and the proposed model, which are compared with experimental results. The improvement in strength attributable to the inclusion of plastic waste can be advantageously used in ground improvement projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research on polymer has drawn much attention mainly due to the ever increasing application of these polymeric materials in several areas such as food packaging industry, agricultural industry and biomedical research. However, increasing industrial use of polymers has led to the environmentally critical issue of waste disposal. Further, the successful implication of polymeric materials in biomedical applications depends on the biodegradability of the concerned polymer. Various enzymes play an important role in the biodegradation of polymers. The present review describes the enzyme mediated biodegradation of various polymers including synthetic, natural and blends of these materials. Detailed examples of enzymatic degradation of polymers are illustrated from current scientific literature with the discussion on various factors that can influence the degradation. In addition, different techniques that are generally applied to assess the degradation process as well as degradation products have been described. Finally, a special emphasis is given to the investigation of the kinetics of polymer degradation by enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines an improved detoxification and rapid biological degradation of toxic pollutant acrylamide using a bacterium. The acrylamide degrading bacterium was isolated from the soil followed by its screening to know the acrylamide degrading capability. The minimal medium containing acrylamide (30 mM) served as a sole source of carbon and nitrogen for their active growth. The optimization of three different factors was analyzed by using Response Surface Methodology (RSM). The bacteria actively degraded the acrylamide at a temperature of 32 degrees C, with a maximum growth at 30 mM substrate (acrylamide) concentration at a pH of 7.2. The acrylamidase activity and degradation of acrylamide was determined by High Performance Liquid Chromatography (HPLC) and Matrix Assisted Laser Desorption and Ionization Time of Flight mass spectrometer (MALDI-TOF). Based on 168 rRNA analysis the selected strain was identified as Gram negative bacilli Stenotrophomonas acidaminiphila MSU12. The acrylamidase was isolated from bacterial extract and was purified by HPLC, whose mass spectrum showed a molecular mass of 38 kDa. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to explore the potential use of fly ash and plastic waste in bulk quantities in civil engineering applications, it is necessary to understand the behavior of fly ash and fly ash mixed with plastic waste. These materials are considered as wastes and in this study, it is shown that combination of fly ash and plastic waste is very useful. In this regard, various tests such as classification tests, unconfined compressive strength and compressibility tests, consolidated undrained tests, and California bearing ratio tests were conducted. The results indicated that the inclusion of plastic waste in fly ash is effective in improving the engineering properties of fly ash in terms of compressive strength, shear strength parameters, and CBR values. In order to understand the effect of sample size on the shear strength parameters of fly ash and fly ash mixed with plastic waste, consolidated undrained tests were conducted with sample sizes of 38x76mm and 50x100mm. The results of the tests indicate that the shear strength increases with the increase in sample size. The implication of the use of fly ash mixed with plastic waste in unpaved roads is presented in terms of reduction of carbon print.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in regenerative medicine, the cost of such therapies is beyond the reach of many patients globally in part due to the use of expensive biomedical polymers. Large volumes of poly(ethylene terephthalate) (PET) in municipal waste is a potential source of low cost polymers. A novel polyester was prepared by a catalyst-free, melt polycondensation reaction of bis(hydroxyethylene) terephthalate derived from PET post-consumer waste with other multi-functional monomers from renewable sources such as citric acid, sebacic acid and D-mannitol. The mechanical properties and degradation rate of the polyester can be tuned by varying the composition and the post-polymerization time. The polyester was found to be elastomeric, showed excellent cytocompatibility in vitro and elicited minimal immune response in vivo. Three-dimensional porous scaffolds facilitated osteogenic differentiation and mineralization. This class of polyester derived from low cost, recycled waste and renewable sources is a promising candidate for use in regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we applied the integration methodology developed in the companion paper by Aires (2014) by using real satellite observations over the Mississippi Basin. The methodology provides basin-scale estimates of the four water budget components (precipitation P, evapotranspiration E, water storage change Delta S, and runoff R) in a two-step process: the Simple Weighting (SW) integration and a Postprocessing Filtering (PF) that imposes the water budget closure. A comparison with in situ observations of P and E demonstrated that PF improved the estimation of both components. A Closure Correction Model (CCM) has been derived from the integrated product (SW+PF) that allows to correct each observation data set independently, unlike the SW+PF method which requires simultaneous estimates of the four components. The CCM allows to standardize the various data sets for each component and highly decrease the budget residual (P - E - Delta S - R). As a direct application, the CCM was combined with the water budget equation to reconstruct missing values in any component. Results of a Monte Carlo experiment with synthetic gaps demonstrated the good performances of the method, except for the runoff data that has a variability of the same order of magnitude as the budget residual. Similarly, we proposed a reconstruction of Delta S between 1990 and 2002 where no Gravity Recovery and Climate Experiment data are available. Unlike most of the studies dealing with the water budget closure at the basin scale, only satellite observations and in situ runoff measurements are used. Consequently, the integrated data sets are model independent and can be used for model calibration or validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of the municipal solid waste settlements and the contribution of each of the components are essential in the estimation of the volume of the waste that can be accommodated in a landfill and increase the post-usage of the landfill. This article describes an experimental methodology for estimating and separating primary settlement, settlement owing to creep and biodegradation-induced settlement. The primary settlement and secondary settlement have been estimated and separated based on 100% pore pressure dissipation time and the coefficient of consolidation. Mechanical creep and biodegradation settlements were estimated and separated based on the observed time required for landfill gas production. The results of a series of laboratory triaxial tests, creep tests and anaerobic reactor cell setups were conducted to describe the components of settlement. All the tests were conducted on municipal solid waste (compost reject) samples. It was observed that biodegradation accounted to more than 40% of the total settlement, whereas mechanical creep contributed more than 20% towards the total settlement. The essential model parameters, such as the compression ratio (C-c'), rate of mechanical creep (c), coefficient of mechanical creep (b), rate of biodegradation (d) and the total strain owing to biodegradation (E-DG), are useful parameters in the estimation of total settlements as well as components of settlement in landfill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents modification of the derivation of a previously proposed constitutive model for the prediction of stress-strain behavior of municipal solid waste (MSW) incorporating different mechanisms, such as immediate compression under loading, mechanical creep, and time-dependent biodegradation effect. The model is based on critical state soil mechanics incorporating increments in volumetric strains because of elastic, plastic, creep, and biodegradation effects. The improvement introduced in this paper is the modified critical state surface and considers five variable parameters for the estimation of stress-strain behavior of MSW under different loading conditions. In addition, an expression for the strain hardening rule is derived, with considerations of time-dependent mechanical creep and biodegradation effects. The model is validated using results from experimental studies and data from published literature. The results are also compared with the predictions of the stress-strain response obtained from a well-established hyperbolic model. (c) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m(3) to 10.3 kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8 degrees to 33 degrees corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8 degrees to 55 degrees in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. (c) 2015 Elsevier Ltd. All rights reserved.