773 resultados para Wade, Butch
Resumo:
Since Januarv 1946 a wade EC Project entitled "Mealiness in fruits Consumers perception and means for detection is being carried out. Mealiness is a sensory attribute that cannot be defined by a single parameter but through a combination of variables (multidimensional structure) Previous studies propose the definition of mealiness as the lack of crispiness of hardness and of juiciness. A destructive instrumental procedure combined with a integration technique has been already developed enabling to identify mealy fruits by destructive instrumental means use other contributions of Barreiro and Ortiz to this Ag Eng 98. Current aims .are focused on establishing non destructive tests for mealiness assessment. Magnetic resonance Imaging (MRI) makes use of the magnetic properties that some atomic nuclei have. especially hidrogen nuclei from water molecules to obtain high quality images in the field of internal quality evaluation the MRI has been used to assess internal injury due to conservation as o treatments as chilling injury un Persimmons Clark&Forbes (1994) and water-core in apples (Wang et al. 1998. In the case of persimmons the chilling injury is described as an initial tissue breakdown and lack of cohesion between cells followed by formation of a firm gel and by a lack of juiciness without changes in the total amount ol water content. Also a browning of the flesh is indicated (Clark&Forhes 1994). This definition fits into the previous description of mealiness.
Resumo:
Acknowledgements James J. Waggitt was funded by a NERC Case studentship supported by OpenHydro Ltd and Marine Scotland Science (NE/J500148/1). Vessel-based transects were funded by a NERC (NE/J004340/1) and a Scottish National Heritage (SNH) grant. FVCOM modelling was funded by a NERC grant (NE/J004316/1). Marine Scotland Science provided time on the FRV Alba-na-Mara as part as the Marine Collaboration Research Forum (MarCRF). The bathymetry data used in hydrodynamic models (HI 1122 Sanday Sound to Westray Firth) was collected by the Maritime & Coastguard Agency (MCA) as part of the UK Civil Hydrography Programme. We wish to thank Christina Bristow, Matthew Finn and Jennifer Norris at the European Marine Energy Centre (EMEC); Marianna Chimienti, Ciaran Cronin, Tim Sykes and Stuart Thomas for performing vessel-based transects; Marine Scotland Science staff Eric Armstrong, Ian Davies, Mike Robertson, Robert Watret and Michael Stewart for their assistance; Shaun Fraser, Pauline Goulet, Alex Robbins, Helen Wade and Jared Wilson for invaluable discussions; Thomas Cornulier, Alex Douglas, James Grecian and Samantha Patrick for their help with statistical analysis; and Gavin Siriwardena, Leigh Torres, Mark Whittingham and Russell Wynn for their constructive comments on earlier versions of this manuscript.
Resumo:
The three genes, gatC, gatA, and gatB, which constitute the transcriptional unit of the Bacillus subtilis glutamyl-tRNAGln amidotransferase have been cloned. Expression of this transcriptional unit results in the production of a heterotrimeric protein that has been purified to homogeneity. The enzyme furnishes a means for formation of correctly charged Gln-tRNAGln through the transamidation of misacylated Glu-tRNAGln, functionally replacing the lack of glutaminyl-tRNA synthetase activity in Gram-positive eubacteria, cyanobacteria, Archaea, and organelles. Disruption of this operon is lethal. This demonstrates that transamidation is the only pathway to Gln-tRNAGln in B. subtilis and that glutamyl-tRNAGln amidotransferase is a novel and essential component of the translational apparatus.
Resumo:
Response to the steroid hormone ecdysone in Drosophila is controlled by genetic regulatory hierarchies that include eight members of the nuclear receptor protein family. The DHR3 gene, located within the 46F early-late ecdysone-inducible chromosome puff, encodes an orphan nuclear receptor that recently has been shown to exert both positive and negative regulatory effects in the ecdysone-induced genetic hierarchies at metamorphosis. We used a reverse genetics approach to identify 11 DHR3 mutants from a pool of lethal mutations in the 46F region on the second chromosome. Two DHR3 mutations result in amino acid substitutions within the conserved DNA binding domain. Analysis of DHR3 mutants reveals that DHR3 function is required to complete embryogenesis. All DHR3 alleles examined result in nervous system defects in the embryo.
Resumo:
Although the collecting duct is regarded as the primary site at which mineralocorticoids regulate renal sodium transport in the kidney, recent evidence points to the distal convoluted tubule as a possible site of mineralocorticoid action. To investigate whether mineralocorticoids regulate the expression of the thiazide-sensitive Na–Cl cotransporter (TSC), the chief apical sodium entry pathway of distal convoluted tubule cells, we prepared an affinity-purified, peptide-directed antibody to TSC. On immunoblots, the antibody recognized a prominent 165-kDa band in membrane fractions from the renal cortex but not from the renal medulla. Immunofluorescence immunocytochemistry showed TSC labeling only in distal convoluted tubule cells. Semiquantitative immunoblotting studies demonstrated a large increase in TSC expression in the renal cortex of rats on a low-NaCl diet (207 ± 21% of control diet). Immunofluorescence localization in tissue sections confirmed the strong increase in TSC expression. Treatment of rats for 10 days with a continuous subcutaneous infusion of aldosterone also increased TSC expression (380 ± 58% of controls). Furthermore, 7-day treatment of rats with an orally administered mineralocorticoid, fludrocortisone, increased TSC expression (656 ± 114% of controls). We conclude that the distal convoluted tubule is an important site of action of the mineralocorticoid aldosterone, which strongly up-regulates the expression of TSC.
Resumo:
There is evidence from both genetic and pharmacologic studies to suggest that the cyclooxygenase-2 (COX-2) enzyme plays a causal role in the development of colorectal cancer. However, little is known about the identity or role of the eicosanoid receptor pathways activated by COX-derived prostaglandins (PG). We previously have reported that COX-2-derived prostacyclin promotes embryo implantation in the mouse uterus via activation of the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) δ. In light of the recent finding that PPARδ is a target of β-catenin transactivation, it is important to determine whether this signaling pathway is operative during the development of colorectal cancer. Analysis of PPARδ mRNA in matched normal and tumor samples revealed that expression of PPARδ, similar to COX-2, is up-regulated in colorectal carcinomas. In situ hybridization studies demonstrate that PPARδ is expressed in normal colon and localized to the epithelial cells at the very tips of the mucosal glands. In contrast, expression of PPARδ mRNA in colorectal tumors was more widespread with increased levels in transformed epithelial cells. Analysis of PPARδ and COX-2 mRNA in serial sections suggested they were colocalized to the same region within a tumor. Finally, transient transfection assays established that endogenously synthesized prostacyclin (PGI2) could serve as a ligand for PPARδ. In addition, the stable PGI2 analog, carbaprostacyclin, and a synthetic PPARδ agonist induced transactivation of endogenous PPARδ in human colon carcinoma cells. We conclude from these observations that PPARδ, similar to COX-2, is aberrantly expressed in colorectal tumors and that endogenous PPARδ is transcriptionally responsive to PGI2. However, the functional consequence of PPARδ activation in colon carcinogenesis still needs to be determined.
Resumo:
Our understanding of the mammalian cell cycle is due in large part to the analysis of cyclin-dependent kinase (CDK) 2 and CDK4/6. These kinases are regulated by E and D type cyclins, respectively, and coordinate the G1/S-phase transition. In contrast, little is known about CDK3, a homolog of CDK2 and cell division cycle kinase 2 (CDC2). Previous studies using ectopic expression of human CDK3 suggest a role for this kinase in the G1/S-phase transition, but analysis of the endogenous kinase has been stymied by the low levels of protein present in cells and by the absence of an identifiable cyclin partner. Herein we report the presence of a single point mutation in the CDK3 gene from several Mus musculus strains commonly used in the laboratory. This mutation results in the replacement of a conserved tryptophan (Trp-187) within kinase consensus domain IX with a stop codon. The protein predicted to be encoded by this allele is truncated near the T loop, which is involved in activation by CDK-activating kinase. This mutation also deletes motif XI known to be required for kinase function and is, therefore, expected to generate a null allele. In stark contrast, CDK3 from two wild-mice species (Mus spretus and Mus mus castaneus) lack this mutation. These data indicate that CDK3 is not required for M. musculus development and suggest that any functional role played by CDK3 in the G1/S-phase transition is likely to be redundant with another CDK.