989 resultados para WHITE LIGHT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de mestrado em Antropologia, especialização natureza e conservação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared, for Triatoma brasiliensis, the egg-laying process and the mortality of adults under conditions of almost permanent darkness and with normal laboratory luminosity. Mortality did not differ between groups. The egg-laying per vial and per female was significantly greater in the group of normal luminosity. We consider that it is not recommendable to keep the adults of this species under complete darkness. Other biological aspects should be analysed in relation to luminosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present measures adopted to prevent transfusion-associated Chagas' disease include screening of blood donors. and/or the inactivation of T. cruzi in collected blood using gentian violet (GV) as a trypanocidal agent. In this study, we investigated the efficacy of the combined use of AMT and UV-A in inactirating T. cruzi in infected human platelet cuncentrates. Human platelet concentrates were infected with T. cruzi (2x10/ml) of the Y strain transfered to PL 269 (Fenwal Laboratories) containers and treated with GV (250řg,/ml). and ascorbic acid (1 mg/ml); GV. ascorbic acid and UV-A; GV and UV-A; AMT (40/tG/ml) and ascorbic acid; AMT, ascorbic acid and UV-A; AMT and UV-A; UV-A alone; and untreated (control). All UV-A treated platelet concentrates were exposed to UV-A doses of 24, 92, 184, 276, 368 and 644 kj/m². and the microscopical research of active T. cruzi was performed, using the microhematocrit technique, 1, 6 and 24 hours after each treatment. A high number of active forms of T. cruzi was observed in all condictions, except when GV was used as the trypanocidal agent, providing evidence of the failure of AMT and UV-A in inactivating T cruzi in infected human platelet concentrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White cell (WBC)-reduction filters have been shown to be effective in removing infectious agents from infected blood products. In this study, the mechanisms of Trypanosoma cruzi (T. cruzi) retention by WBC-reduction filters were assessed. Human packed red blood cell (PRBC) and platelet concentrate (PC) samples were contaminated with T. cruzi organisms (Y strain; 3.4 x 10(6)/ml), and then filtered using WBC-reduction experimental filters that provided about 3 log10 WBC removal. Transmission electron microscopy sections showed that T. cruzi parasites were removed from contaminated PRBC and PC samples primarily by mechanical mechanism without interacting with filter fibbers or blood cells. In addition, we found that T. cruzi parasites were also removed by a direct fibber adhesion. These data indicate that T. cruzi parasites are removed from infected blood not only by mechanical mechanism but also by biological mechanism probably mediated by parasite surface proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: White piedra is a superficial mycosis caused by the genus Trichosporon and characterized by nodules on hair shaft. METHODS: The authors report a family referred to as pediculosis. Mycological culture on Mycosel® plus molecular identification was performed to precisely identify the etiology. RESULTS: A Trichosporon spp. infection was revealed. The molecular procedure identified the agent as Trichosporon inkin. CONCLUSIONS: White piedra and infection caused by T. inkin are rarely reported in Southern Brazil. The molecular tools are essentials on identifying the Trichosporon species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for more efficient illumination systems has led to the proliferation of Solid-State Lighting (SSL) systems, which offer optimized power consumption. SSL systems are comprised of LED devices which are intrinsically fast devices and permit very fast light modulation. This, along with the congestion of the radio frequency spectrum has paved the path for the emergence of Visible Light Communication (VLC) systems. VLC uses free space to convey information by using light modulation. Notwithstanding, as VLC systems proliferate and cost competitiveness ensues, there are two important aspects to be considered. State-of-the-art VLC implementations use power demanding PAs, and thus it is important to investigate if regular, existent Switched-Mode Power Supply (SMPS) circuits can be adapted for VLC use. A 28 W buck regulator was implemented using a off-the-shelf LED Driver integrated circuit, using both series and parallel dimming techniques. Results show that optical clock frequencies up to 500 kHz are achievable without any major modification besides adequate component sizing. The use of an LED as a sensor was investigated, in a short-range, low-data-rate perspective. Results show successful communication in an LED-to-LED configuration, with enhanced range when using LED strings as sensors. Besides, LEDs present spectral selective sensitivity, which makes them good contenders for a multi-colour LED-to-LED system, such as in the use of RGB displays and lamps. Ultimately, the present work shows evidence that LEDs can be used as a dual-purpose device, enabling not only illumination, but also bi-directional data communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.